G482 Electrons, Waves and Photons

Question		on	Expected Answers	Marks	Additional Guidance
1					
	а	i	E = (Pt =) 36 x 3600	C1	allow I = 3 A and E = VIt, etc.
			$= 1.3 \times 10^5 (J)$	A1	accept 129600 (J)
		ii	$Q = E/V = 1.3 \times 10^{5}/12$ or $Q = It = 3 \times 3600$	C1	ecf (a)(i)
			$= 1.1 \times 10^4$	A1	accept 1.08 x 10 ⁴
			unit: C	B1	allow A s not J V ⁻¹
		iii	$Q/e = 1.1 \times 10^4/1.6 \times 10^{-19}$	C1	ecf (a)(ii)
			$= 6.9 \times 10^{22}$	A1	accept 6.75 or 6.8 x 10 ²² using 10800
	b	i	the average displacement/distance travelled of the electrons along the		no mark for quoting formula
			wire per second;	B1	allow in one second
			(over time/on average) they move slowly in one direction through the		
			metal/Cu lattice (when there is a p.d. across the wire);	B1	
			(because) they collide constantly/in a short distance with the lattice/AW	B1	max 2 marks from 3 marking points
		ii	select I = nAev (= 3.0 A)	C1	1 mark for correct formula
			$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$	C1	1 mark for correct substitutions into formula
			$= 2.1 \times 10^{-3} \text{ (m s}^{-1)}$	A1	1 mark for correct answer to 2 or more SF
			Total question 1	12	

C	Question		Expected Answers	Marks	Additional Guidance
2					
	а		$\rho = RA/I$	M1	full word definition gains both marks
			with terms defined	A1	allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel;	B1	max 1 mark for 38 x 0.052 = 1.98 with no
			or the area of the cable is 38 times the area of a strand or vice versa;		further explanation
			so the resistance of 1 strand is 38 times bigger, (i.e. $1.98 \Omega \text{ km}^{-1}$)		allow with either and or
			or the resistance is inversely proportional to the area	B1	allow only with or
		ii	$A = \rho I/R = 2.6 \times 10^{-8} \times 1000/2.0$	C1	allow 1 mark max. for R = 0.052 giving
			$= 1.3 \times 10^{-5} (m^2)$	A1	$A = 5.0 \times 10^{-4} \text{ (m}^2\text{)}$
					give 1 mark max. for 1.3 x 10 ⁻⁸ (m ²)
	С	i	$P = VI = 400x 10^3 x 440$	C1	P = VI not adequate for first mark
			$= 1.8 \times 10^8 \text{ (W) or } 180 \text{ M(W)}$	A1	expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$P = I^2R$	C1	accept power/cable = 2000/12 = 167 MW
			$= 440^2 \times 0.052$	C1	I = 167M/400k = 417 A
			$= 1.0 \times 10^4 \text{ W (km}^{-1}) \text{ or } 10 \text{ kW (km}^{-1})$	A1	$P = 417^2 \times 0.052 = 9.0(3) \text{ kW (km}^{-1})$
					N.B. answer mark includes consistent unit
		iv	power lost per cable = 10 k x 100 x 12 = 12.0 MW	C1	ecf(c)(ii)(iii)
			fraction remaining = $(2000 - 12)/2000 = 0.994 \times 100 = 0.994 \text{ so } 99.4\%$	A1	allow second mark for 'correct' answer as
			or power lost per strand = 10 k x100 = 1.0 MW		fraction not percentage with BOD sign
			fraction remaining = $(176 - 1)/176 = 0.994$ so 99.4%		allow 1 mark max. if give correct % lost
					given rather than % remaining
					allow 1 mark max. for
					100 x (2000 – 1)/2000 = 99.95%
			Total question 2	14	

(Question		Expected Answers	Marks	Additional Guidance
3			·		
	а		resistors in series add to 20 Ω and current is 0.60 A	B1	accept potential divider stated or formula
			so p.d. across XY is 0.60 x 12 (= 7.2 V)	B1	gives (12 /20) x 12 V (= 7.2)V
	b	i	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		ii	resistance of LDR and 12 Ω (in parallel)/across XY decreases	B1	alternative I increases so p.d. across 8.0 Ω
			so has smaller share of supply p.d. (and p.d. across XY falls)	B1	increases; so p.d. across XY falls
			Total question 3	6	
(Questi	on	Expected Answers	Marks	Additional Guidance
4					
	а	i	no current/no light/does not conduct until V is greater than 1.5 V	B1	allow 1.4 to 1.6 V (QWC mark)
			brightness/intensity of LED increases with current/voltage above 1.5 V	B1	(alternative QWC mark)
			above 1.8 V current rises almost linearly with increase in p.d./AW	B1	
			the LED does not obey Ohm's law	M1	
			as I is not proportional to V/AW	A1	
			below 1.5 V, LED acts as an infinite R/ very high R/acts as open switch	B1	max 5 marks which must include at least
			above 1.5 V, LED resistance decreases (with increasing current/voltage)	B1	one of the first 2 marking points
		ii 1	infinite resistance	B1	
		2	$I = 23.0 \pm 1.0 \text{ (mA)}$	C1	1 507 / 0 000 0
			$R = 1.9 \times 10^3/(23 \pm 1) = 83 \pm 4 \Omega$	A1	apply POT error for 0.083 Ω
	b		LED symbol with correct orientation	B1	diode symbol + circle + at least one arrow
			resistor (need not be labelled) and ammeter in series with it	B1	pointing away
			voltmeter in parallel across LED only	B1	
	С		the resistor limits the <u>current</u> in the circuit (when the LED conducts)	B1	
			otherwise it could overheat/burn out/be damaged/AW	B1	H 001/
	d		in fig 4.3 the voltage range is from zero to maximum possible	B1	allow 6.0 V
			in fig. 4.2 the resistance variation is small/AW	B1	accept the LED is part of a potential divider
			(so) in fig. 4.2 voltage variation across LED is small	B1	accept only at the top end of the range/AW
			Total question 4	16	

	Question		Expected Answers	Marks	Additional Guidance
5					
	а	i	λ distance between (neighbouring) identical points/points with same phase (on the wave)	B1	accept peak/crest to peak/crest, etc.
			f number of waves passing a point /cycles/vibrations (at a point) per unit time/second	B1 B1	accept number of waves produced by the wave source per unit time/second
			v distance travelled by the wave (energy) per unit time/second	ы	not $v = f \lambda$ and not 'in one second'
		ii	in 1 second f waves are produced each of one wavelength λ distance travelled by first wave in one second is f $\lambda = v$	M1 A1	accept time for one λ to pass is 1/f so $v = \lambda/(1/f) = f \lambda$ give max 1 mark for plausible derivations purely in terms of algebra (no words)
	b	i	infra red is part of the e-m spectrum lower f $\bf or$ longer $\bf \lambda$ than the visible region/light $\bf or$ suitable value or range of $\bf \lambda$	B1 B1	accept any single λ in range 10 ⁻⁵ m to 7.5 x 10 ⁻⁷ m or any reasonable wider range
		ii1	$\lambda = c/f = 3.0 \times 10^8 / 6.7 \times 10^{13}$ 4.5 x 10 ⁻⁶ (m)	C1 A1	accept 4.48 x 10 ⁻⁶ or more s.f.
		2	$T = 1/f = 1/6.7 \times 10^{13}$ $T = 1.5 \times 10^{-14}$ (s)	C1 A1	accept 1.49 x 10 ⁻¹⁴
		iii	at least one cycle of a sine or cosine curve as judged by eye amplitude 8.0 x 10 ⁻¹² m	B1 B1	ecf (b)(ii)2
			period = 1.5 x 10 ⁻¹⁴ s	B1	
			Total question 5	14	

	Question		Expected Answers	Marks	Additional Guidance
6					
	а	i	when (two) waves meet/combine/interact/superpose, etc. (at a point)	M1	allow for A1 mark: (vector) sum/resultant
			there is a change in overall intensity/displacement	A1	displacement(s)/AW
		ii	constant phase difference/relationship (between the waves)	B1	just stating same frequency not sufficient
	b	i	path difference of nλ for constructive interference	M1	allow waves arrive in phase
			producing either maximum amplitude/intensity or a maximum	A1	
			path difference of $(2n + 1)\lambda/2$ for destructive interference	M1	allow waves arrive in anti-/out of phase
			producing either minimum amplitude/intensity or a minimum	A1	max 3 marks; max 1 mark for two correct marking points but with n omitted
		ii	$x = \lambda D/a = 0.030 \times 5.0/0.20$	C1	give 1 mark max for 0.75 mm but zero for
			=0.75 (m)	A1	750 m
		iii 1	intensity increases by factor of 4	B1	
			position unchanged	B1	
		2	intensity unchanged	B1	
			distance apart of maxima is doubled	B1	
		3	intensity unchanged	B1	
			maxima move to positions of minima (and vice versa)	B1	
			Total question 6	14	

G482 Mark Scheme January 2010

Question		on	Expected Answers	Marks	Additional Guidance
7					
	а	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.3 \times 10^{-7}$	M1	mark is for correct substitution into formula
			$= 3.16 \times 10^{-19} (J)$	A1	min of 2 sig figs; allow 3.1 for h = 6.6×10^{-34}
		ii	$1.0 \times 10^{-3}/3(.2) \times 10^{-19} (= 3.1 \times 10^{15})$	B1	accept 3 x 10 ¹⁵ ; the mark is for the
					expression
		iii	energy levels explanation: electrons have discrete energies in atom/AW	B1	QWC mark
			each photon produced by electron moving between levels	B1	good diagram can score marks
			photon energy equal to energy difference between levels	B1	allow $E_1 - E_2 = hf$ or similar
			electron loses energy/making transition in correct direction	B1	
		iv	blue light has a higher frequency/shorter wavelength than red light	B1	
			energy per photon is higher (so fewer needed to produce one mW)	B1	
	b	i	vertical arrow up approximately through X	B1	allow tolerance e.g. ± 10°
		ii	$I = 0.2 \text{ ne}$; = 0.2 x 3.2 x 10^{15} x 1.6 x 10^{-19}	C2	max 2 marks if forget 0.2 factor
			= 1.0(24) x 10^{-4} (A) or 0.10 mA (9.6 x 10^{-5} if using 3 x 10^{15})	A1	0.51 mA (0.48) if forget 0.2 factor
		iii	reflection/absorption at top layer; light/some photons reach bottom layer;	B1	award mark for any sensible comment; see
			photons below threshold energy/photons absorbed by electrons without		examples given
			release; recombination of ion pairs in insulating layer;		
			scattering of light/photons out of insulating layer		
			Total question 7	14	
C	uesti	on	Expected Answers	Marks	Additional Guidance
8					
	а	i	paths spread out after passing through a gap or around an obstacle/AW	B1	
		ii	wavelength of electrons	M1	allow electrons behave as waves/AW
			must be comparable/of the order of magnitude of the atomic spacing	A1	allow must be about 10 ⁻¹⁰ m
	b		$\lambda = h/mv$	C1	mark for selecting formula
			$v = 6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$	M1	correct manipulation and subs. shown
			$= 6.0 \text{ or } 6.1 \times 10^6 \text{ (m s}^{-1})$	A1	give all 3 marks for answers to 3 figs or
					more: i.e. 6.04, 6.06 or 6.07
	С	i	$eV = \frac{1}{2}mv^2$	C1	mark for algebraic equation
			$V = mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$	C1	mark for correct substitution
			$= 1.0(2) \times 10^2 \text{ (V)}$	A1	give 1 mark max for k.e. = 1.6(4) x 10 ⁻¹⁷ J
	<u>L</u>				using 6.1 gives 104 (V)
		ii	electrons should be repelled by cathode and/or attracted by anode or		award mark if answer indicates this idea
			they will be attracted back to the cathode/slowed down if cathode positive	B1	
			Total question 8	10	