

Mark Scheme (Results)

Summer 2012

GCE Chemistry (6CH01) Paper 01 The Core Principles of Chemistry

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code US031856

All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an **asterix (*)** are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	С		1

Question Number	Correct Answer	Reject	Mark
2	В		1

Question Number	Correct Answer	Reject	Mark
3	С		1

Question Number	Correct Answer	Reject	Mark
4	Α		1

Question Number	Correct Answer	Reject	Mark
5	В		1

Question Number	Correct Answer	Reject	Mark
6	С		1

Question Number	Correct Answer	Reject	Mark
7	В		1

Question Number	Correct Answer	Reject	Mark
8	A		1

Question	Correct Answer	Reject	Mark
Number			
9	A		1

Question Number	Correct Answer	Reject	Mark
10	D		1

Question Number	Correct Answer	Reject	Mark
11	В		1

Question Number	Correct Answer	Reject	Mark
12	A		1

Question Number	Correct Answer	Reject	Mark
13	D		1

Question Number	Correct Answer	Reject	Mark
14	С		1

Question Number	Correct Answer	Reject	Mark
15	A		1

Question Number	Correct Answer	Reject	Mark
16	D		1

Question Number	Correct Answer	Reject	Mark
17	В		1

Question Number	Correct Answer	Reject	Mark
18	С		1

Question Number	Correct Answer	Reject	Mark
19	С		1

Question Number	Correct Answer	Reject	Mark
20	D		1

TOTAL FOR SECTION A = 20 MARKS

Section **B**

Question Number	Acceptable Answers	Reject	Mark
21(a)	First mark:	Mass of (all the)	2
	Mass of an atom/mass of an	isotope <u>s</u> /atom <u>s</u>	
	isotope (of an element) (1)		
		'Mass of an element'	
	IGNORE any references to average or (weighted) mean		
	Second mark: relative to 1/12 th the mass of a ¹² C atom (1)		
	NOTE: The second mark is awarded for any mention of ¹² C		
	IGNORE throughout the candidate's answer any references to 'moles' or '1 mol' or '12 g'		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	$ \{ (35 \times 75.53) + (37 \times 24.47) \} \div 100 $ $ (1) $ $ = 35.4894 $ $ = 35.49 $ $ (1) $ $ Answer to 4 s.f. only. $		2
	Correct answer no working (2) IGNORE units of any kind (e.g. 'g' 'g mol ⁻¹ ' 'amu', etc.)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	$^{35}\text{Cl}_2^+/(^{35}\text{Cl}-^{35}\text{Cl})^+$ (1)	⁷⁰ Cl ₂ ⁺ ⁷⁴ Cl ₂ ⁺	2
	$^{37}\text{Cl}_2^+/(^{37}\text{Cl}-^{37}\text{Cl})^+$ (1)		
	ALLOW $({}^{35}CI + {}^{35}CI)^+$ and/or $({}^{37}CI + {}^{37}CI)^+$ OR $({}^{35}CI{}^{35}CI)^+$ and/or $({}^{37}CI{}^{37}CI)^+$ OR $({}^{35}CI$ and ${}^{35}CI)^+$ and/or $({}^{37}CI$ and ${}^{37}CI)^+$ If the 'formal' charge is omitted on either ion (or both the ions), then award (1) mark only. NOTE: ${}^{35}CI^+ {}^{35}CI^+$ and ${}^{37}CI^+ {}^{37}CI^+$ scores (1) as each ion has an extra + charge. ${}^{25}CI^+$ and ${}^{2^37}CI^+$ scores (1) Accept mass number written as superscript to right of symbol.	2 ³⁵ CI and/or 2 ³⁷ CI scores (0)	

Question Number	Acceptable Answers		Reject	Mark
21(b)(iii)	72	(1)		2
	³⁵ Cl — ³⁷ Cl ⁽⁺⁾	(1)		
	ALLOW $\binom{^{35}\text{CI} + ^{37}\text{CI}}{^{(37}\text{CI} + ^{35}\text{CI})^{(+)}}$ and/or $\binom{^{37}\text{CI} + ^{35}\text{CI}}{^{(+)}}$ OR $\binom{^{37}\text{CI}^{^{35}}\text{CI}}{^{(+)}}$ and/or $\binom{^{37}\text{CI}^{^{35}}\text{CI}}{^{(+)}}$ or $\binom{^{35}\text{CI}}{^{(37}\text{CI} \text{ and } ^{37}\text{CI})^{(+)}}$ and/or $\binom{^{37}\text{CI}}{^{(37}\text{CI} \text{ and } ^{35}\text{CI})^{(+)}}$			
	NOTE: The + charge is not needed on - ion IGNORE extra + charges, so AL ³⁵ Cl ^{+ 37} Cl ⁺ and/or ³⁷ Cl ^{+ 35} Cl ⁺			

Question Number	Acceptable Answers	Reject	Mark
22(a)	First mark:- Makes mention of energy/enthalpy/(heat) energy/heat (change) AND to remove an electron AND one mole/1 mol	"Energy given out" for first mark	2
	Second mark: Makes mention of gaseous atom(s) ALTERNATIVE ANSWER	Just 'gaseous element'/ 'gaseous substance'	
	Energy change per mole for (1)		
	$X(g) \to X^{+}(g) + e^{(-)}$ (1)		
	Mark the two points independently		
	IGNORE any references to standard conditions		

Question Number	Acceptable Answers	Reject	Mark
*22(b)	Any two from three:- (Atomic) radius increases/there are more shells/(outermost) electron further from the nucleus (1) there is 'more shielding' or 'more screening' (down group) (1) the nuclear attraction decreases OR attraction between nucleus and (outermost) electron decreases OR the increased shielding/increased distance outweighs the increased nuclear charge (1) IGNORE any references to 'more protons' and/just 'increasing nuclear charge' IGNORE references to "effective nuclear charge"	Ionic radius increases	2

22(c) (i) Any ONE from: (Electrons are being removed from an) increasingly positive ion/ 1 charge on the ion (successively) increases/ charge on the ion (successively) increases/ 1 increasing proton : electron ratio/ same number of protons (attracting) fewer electrons / 1 ions get smaller/ the electron repulsion decreases/ 1 the shielding decreases/ electrons (being removed are) closer to the nucleus/ 1	Question Number	Acceptable Answers	Reject	Mark
effective nuclear charge increases		(Electrons are being removed from an) increasingly positive ion/ charge on the ion (successively) increases/ increasing proton : electron ratio/ same number of protons (attracting) fewer electrons / ions get smaller/ the electron repulsion decreases/ the shielding decreases/ electrons (being removed are) closer to the nucleus/		1

PMT

Question	Acceptable Answers	Reject	Mark
Number *22(c)(ii)	First mark: <u>Two</u> jumps		2
	Two (large) jumps (between 1st and 2nd and 9th and 10th IEs)(1)		
	NOTE: A sketch graph with two (large) jumps can score this first mark	1 st mark if the graph is sketched 'back to front'	
	Note if the jumps are specified, they must be between 1 st and 2 nd and 9 th and 10 th IEs		
	Second mark: Electronic configuration of Na		
	2, 8, 1 mentioned in words, annotated on a sketch graph or drawn out in a diagram (e.g. electrons shown in orbits/shells around the centre of the atom) but NOT just inferred (1)		
	ALLOW "1, 8, 2" OR 1s ² 2s ² 2p ⁶ 3s ¹		
	Mark the two points independently		

PMT

22(d)(i) Credit any of the following 1	Question Number	Acceptable Answers	Reject	Mark
representations (but need BOTH Mg AND AI to be correct) Mg $1s^22s^22p^63s^2$ and AI $1s^22s^22p^63s^23p^1$ Mg $1s_22s_22p_63s_2$ and AI $1s_22s_22p_63s_23p_1$ Mg $1S^22S^22P^63S^2$ and AI $1S^22S^22P^63S^2ap_1$ Mg $1S_22S_22P^63S^2ap_1$ Mg $1S_22S_22P^63S^2ap_1$ Mg $1S_22S_22P_63S_2ap_1$ Mg $1S_22S_22P_63S_2ap_1$		representations (but need BOTH Mg AND AI to be correct) Mg $1s^22s^22p^63s^2$ and AI $1s^22s^22p^63s^23p^1$ Mg $1s_22s_22p_63s_2$ and AI $1s_22s_22p_63s_23p_1$ Mg $1S^22S^22P^63S^2$ and AI $1S^22S^22P^63S^23P^1$ Mg $1S_22S_22P_63S_2$ and AI		1

Question Number	Acceptable Answers	Reject	Mark
*22(d)(ii)	NOTE: ALLOW an argument focusing on either the AI or the Mg atom EITHER		1
	In AI, (3p) electron (lost is) at higher energy/more shielded (by 3s electrons)/further from the nucleus IGNORE any reference to an unpaired electron in AI OR	Al has one more shell than Mg Just (lost from) a new sub-shell	
	In Mg, (3s) electron (lost is) at lower energy/less shielded/ nearer to the nucleus/from a full subshell/from a full orbital/from (stable) (3)s ² Any reference to an Al atom being	Electron lost in Mg from a "full shell "	
	larger in size than an Mg atom scores zero overall.		

Question Number	Acceptable Answers	Reject	Mark
23(a)	The heat/enthalpy/energy change (for a reaction) is independent of the path(way)/route IGNORE any extra detail referring to "initial and final states"		1

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$\begin{array}{c} \mathbf{CH_1+11/2} & \mathbf{O_2} \\ (\mathbf{+1/2} & \mathbf{O_2}) \\ \mathbf{CO_2+2H_2O} \\ \mathbf{CO_2+2H_2O} \\ \mathbf{(1)} \\ \text{Both arrows in correct direction} \\ \text{downwards} \\ \mathbf{(1)} \\ \text{IGNORE state symbols, even if} \\ \text{incorrect} \\ \end{array}$		2

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	$\Delta H = -890 - (-283)$ (1) = -607 (kJ mol ⁻¹) (1) Correct answer with no working scores (2) NOTE: +607 (kJ mol ⁻¹) scores (1) only		2

Question Number	Acceptable Answers	Reject	Mark
	Cannot stop the reaction at CO OR the reaction produces CO ₂ /complete combustion occurs OR may produce some carbon/soot OR cannot react exact amounts of methane to oxygen	non-standard conditions Just incomplete combustion occurs Just forming 'other products' /just a 'mixture of products' Just methane is 'very reactive'/ 'explosive' Just heat loss	1
		Cannot measure the temperature change	

PMT

Question Number	Acceptable Answers	Reject	Mark
23(c)	First mark: State of the H ₂ O Water is in the gas phase/water is (formed) as steam/water is not in its standard state/water is not (formed as a) liquid (1) Second mark: I dea of an energy change when there is a change of state		2
	Change of state involves an energy change /energy change (for the reaction given) is less exothermic (1)	Energy change is more exothermic /less endothermic Heat loss	
	ALLOW 'more endothermic' instead of 'less exothermic' IGNORE references to non-standard	'Incomplete combustion'	
	conditions		

Question	Acceptable Answers	Reject	Mark
Number			
24(a)	$C_n H_{2n}$		1
	ALLOW letters other than n		

Question Number	Acceptable Answers	Reject	Mark
24(b)	A compound which contains (C=C) double bonds OR A compound that will undergo addition reactions OR Does not contain the maximum number of hydrogen atoms		1

Question Number	Acceptable Answers		Reject	Mark
24(c)(i)	E-3-ethylhex-2-ene	(2)		2
	(1) mark for 3-ethylhex-2-ene(1) mark for 'E'			
	IGNORE any missing hyphens or a hyphens replaced by commas	ny		
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	The four atoms/four groups around the C=C double bond are different OR No two groups are the same OR There are no common groups on either side of the C=C double bond OR There are two alkyl groups on one of the carbon atoms (in the C=C double bond) OR There are three alkyl groups around the double bond OR An indication of the existence of Priority Rules (for E-Z nomenclature) OR One of the carbon atoms (of the C=C double bond) is not bonded to a hydrogen atom ALLOW 'functional groups' for 'groups'	Each side is not symmetrical	1

ALLOW displayed or skeletal formulae throughout 24(d)

Question	Acceptable Answers	Reject	Mark
Number			
24(d)(i)	CH ₃ CH ₃	C_2H_6	1
	ALLOW displayed or skeletal formulae		
	throughout 24(d)		

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	$C_2H_4CI_2$	1

Question Number	Acceptable Answers	Reject	Mark
24(d)(iii)	HOCH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	$C_2H_6O_2$	1

Question	Acceptable Answers	Reject	Mark
Number			
24(d)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	BrCH ₂ CH ₂ Br;	1
		$C_2H_5OBr; C_2H_4Br_2$	

Question	Acceptable Answers	Reject	Mark
Number		Reject	Mark
24(e)	Major product route:		4
	$\begin{array}{c} C = C \\ H \end{array} \longrightarrow \begin{array}{c} H - C - C + \\ H \\$		
	First mark: Curly arrow from C=C to the H (in H-Br) AND curly arrow from the bond in H—Br to the Br	1)	
	Second mark: Structure of correct secondary carbocation (1)	
	Third mark:Curly arrow from anywhere on the bromide ion towards the C+ on the carbocation(************************************	n 1)	
	NOTE: The bromide ion must have a full negative charge, but the lone pair of electrons on the B NEED NOT be shown	3r	
	Fourth mark: Choice of 2-bromopropane as major product	1)	
	For showing the major product mechanism correctly	4)	
	• both arrows (1)	
	• carbocation intermediate (1)	
	 attack by bromide ion (Bromide ion must show a full negative charge. The lone pair of electrons need not be shown) 	(1)	
	 choice of 2-bromopropane as major product 	1)	

Single-headed arrows used throughout max Minor product route max (3)	(3)
$\begin{array}{cccc} H & \begin{array}{c} CH_{3} & H & CH_{3} \\ C = C & \end{array} & \begin{array}{c} +C - C - H \\ H & \end{array} & \begin{array}{c} H & \begin{array}{c} CH_{3} \\ C - C - H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & \begin{array}{c} CH_{3} \\ C - C - H \\ H & H \end{array} & \begin{array}{c} H - C - C - H \\ H & H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H & H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H - C - C - H \\ H & H \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} \\ H & CH_{3} \end{array} & \begin{array}{c} H & CH_{3} $	S H
If the minor product route is shown, the last mark is lost, but the first three marks can be scored consequentially as follows:-	
both arrows	(1)
carbocation intermediate	(1)
 attack of bromide ion (NOTE: The bromide ion must show a negative charge. The lone pair of electrons need not be shown) 	(1) full
NOTE: If a correct mechanism for the electrophilic addition of HBr to ethene is shown then ma (2) (i.e. the first and the third marks in the mechanism)	IX

Question Number	Acceptable Answers	Reject	Mark
24(f)(i)	H H H H H H H H H H H H H H H H H H (1)		2
	H = C = C + H + C = C + H + C = C + H + C = C + H + C = C + H + C = C + H + C = C + C + C + C + C + C + C + C + C		
	NOTE: CH ₃ group does not have to be displayed.		
	IGNORE if any connectivity is shown from the H_3 in a C H_3 group		
	IGNORE bond angles		
	ALLOW one mark for just but-2-ene's structural formula		

Question Number	Acceptable Answers	Reject	Mark
Number 24(f) (ii)	 Any ONE of:- No atoms lost (or gained) No elements lost (or gained) (Only) one product (is formed) (Produced by) an addition reaction Addition polymer(ization) Polymer is a repeat of the monomer No small molecules (formed) No co-products No waste products Same C:H ratio Same ratio of carbon: hydrogen atoms 	(Monomer and polymer have) ' same number of carbon and hydrogen atoms'	1
	Same ratio of each elementSame ratio of atoms		

Question Number	Acceptable Answers	Reject	Mark
24(f)(iii)	100% AND some correct justification is needed	Statements such as 'the atom	1
	ONE answer from:-	economy is almost 100%'	
	100% as addition reaction	OR	
	100% because all the atoms are incorporated into the polymer	Just "it has a high atom economy"	
	100% because (only) one product is formed		
	100% because (only) one desired product is formed		
	100% because no atoms are lost		
	100% because no waste products		
	100% because no small molecules (formed)		
	100% as no co-products		
	100% as no by-products		

OutsettionAcceptable AnswersRejectMark 25(a)(i) Amount Na = 1.73 (g) \div 23 (g mol ⁻¹) = 0.075(22) (mol) Amount O = 1.20 (g) \div 16 (g mol ⁻¹) = 0.075 (mol) (1) IGNORE sf, even if 1 sf2NaO(1)Na2O2Correct answer no working(2)NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = 23 \div 1.73 = 13.3 Amount O = 16 \div 1.20 = 13.3 scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O} = 32$ gives Na ₂ O and scores second mark	Ouestien	Acceptable Answers	Delect	Mork
25(a)(i) Amount Na = 1.73 (g) \div 23 (g mol ⁻¹) = 0.075(22) (mol) Amount O = 1.20 (g) \div 16 (g mol ⁻¹) = 0.075 (mol) (1) IGNORE sf, even if 1 sf NaO (1) Na ₂ O ₂ Correct answer no working (2) NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = 23 \div 1.73 = 13.3 Amount O = 16 \div 1.20 = 13.3 scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of O = 32 gives Na ₂ O and scores	Question	Acceptable Answers	Reject	Mark
Correct answer no working (2) NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of 0 = 32 gives Na ₂ O and scores		= $0.075(22)$ (mol) Amount O = 1.20 (g) ÷ 16 (g mol ⁻¹) = 0.075 (mol) (1)		2
NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O} = 32$ gives Na ₂ O and scores		NaO (1)	Na ₂ O ₂	
Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of O = 32 gives Na ₂ O and scores		Correct answer no working (2)		
		Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na : O ratio as 0.157 : 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of O = 32 gives Na ₂ O and scores		

Question Number	Acceptable Answers	Reject	Mark
25(a)(ii)	(NaO = 39 hence molar mass twice that of NaO ∴)	'2NaO'	1
	so Na₂O₂		

Question Number	Acceptable Answers		Reject	Mark
25(a)(iii)	$2Na(s) + O_2(g) \rightarrow Na_2O_2(s)$			2
	All species correct	(1)		
	State symbols and balancing	(1)		
	NOTE: 2 nd mark is conditional on correct species.	:		
	NOTE: 2Na(s) + $O_2(g) \rightarrow 2NaO(s)$ scores (1)			
	$Na(s) + O_2(g) \rightarrow NaO_2(s)$ scores (1)			
	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$ scores (2)			

Question Number	Acceptable Answers		Reject	Mark
25(a)(iv)	0.0375 mol x 24 dm ³ mol $^{-1}$	(1) (1)		2
	Correct answer no working (OR Moles of Na = $1.73 \div 23 = 0.0752$ = moles of O Moles of O ₂ = $0.075217 \div 2 =$ 0.0376085 $0.0376085 \times 24 = 0.903 \text{ (dm}^3)$ or 903 cm ³	(2)		
	IGNORE s.f., including ONE s.f. NOTE: If number of moles x 24 (dm ³ mol ⁻ is clearly evident and correctly calculated in stated units, award second mark	⁻¹)		

Question Number	Acceptable Answers	Reject	Mark
25(a)(v)	$0.0375 \times 6.02 \times 10^{23}$ (= 2.2575 x 10 ²² (molecules))		1
	= 2.26 x 10 ²² (molecules)		
	IGNORE s.f. unless 1 s.f.		

1 1 1 1

Question Number	Acceptable Answers	Reject	Mark
25(b)	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. Na ₂ O or allow NaO ₂)	Just 'very reactive' OR 'very explosive' sodium forms Na ₂ O ₂ alone	1
	NOTE: If nitrogen / N_2 is mentioned as part of a 'list' of substances that can be present in air, award the mark	References to hydrogen in the air	
		Just 'reacts with other substances in the air' (as nitrogen not identified	
		Sodium nitrate formation	
		Just sodium hydroxide formation	

Question Number	Acceptable Answers	Reject	Mark
26(a)	(Electrostatic) attraction between (bonding) electrons and nuclei/protons	Just a 'shared pair of electrons'	1

- IGNORE ANY INNER SHELL ELECTRONS DRAWN
- ONLY THE TOTAL <u>NUMBERS</u> OF ELECTRONS IN OUTER SHELLS ARE BEING ASSESSED
- ALLOW ELECTRONS TO BE ALL DOTS OR ALL CROSSES OR BOTH

Question Number	Acceptable Answers	Reject	Mark
26(b)(i)	H • x H & C & H x • H		1

Question Number	Acceptable Answers	Reject	Mark
26(b)(ii)	$ \begin{array}{cccc} H_{+} & H \\ \bullet C & \bullet C^{+} \\ H^{+} & \bullet H \end{array} $		1

Question Number	Acceptable Answers	Reject	Mark
26(b)(iii)	NOTE: The lone pair of electrons on each N atom do not have to be shown as a pair		1

Question Number	Acceptable Answers	Reject	Mark
26(b)(iv)	$\begin{bmatrix} H \\ \bullet x \\ H \bullet N \bullet H \\ x \bullet \\ H \end{bmatrix}^{+}$ The + sign can be shown anywhere Ignore missing brackets Ignore if the + is missing		1

Question Number	Acceptable Answers	Reject	Mark
26(c)(i)	IGNORE any references to 'molecules' in this part only First mark: Location of silicon's electrons Silicon's (outer) electrons are fixed (in covalent bonds)/ silicon's (outer) electrons are in fixed positions (in covalent bonds)/ silicon's (outer) electrons are involved in bonding (1) Second mark: Lack of mobility of silicon's electrons	'Silicon is ionic' scores (0) for the question	2
	(therefore) silicon's electrons are not free (to move)/ silicon has no free electrons/ there are no mobile electrons in silicon/ silicon has no delocalized electrons/ silicon's electrons cannot flow (1) IGNORE references to lack of ions	'silicon's ions are not free to move' scores (0) for the question	

Question Number	Acceptable Answers	Reject	Mark
26(c)(ii)	(The covalent) bonds are strong (throughout the lattice) (1)	<pre>'(simple) molecular silicon' (0) /'molecules of</pre>	2
	(therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions (1)	silicon' (0) /'silicon has ions' (0) /'intermolecular forces' / 'yan der	
	IGNORE any references to 'giant molecular'	Waals' forces'/ 'London forces' (0) ALL THE ABOVE SCORE (0) OVERALL	

TOTAL FOR SECTION B = 60 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US031856 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

