

General Certificate of Education Advanced Subsidiary Examination January 2013

Mathematics

MPC1

Unit Pure Core 1

Monday 14 January 20139.00 am to 10.30 am

For this paper you must have：

－the blue AQA booklet of formulae and statistical tables．
You must not use a calculator．

Time allowed

－ 1 hour 30 minutes

Instructions

－Use black ink or black ball－point pen．Pencil should only be used for drawing．
－Fill in the boxes at the top of this page．
－Answer all questions．
－Write the question part reference（eg（a），（b）（i）etc）in the left－hand margin．
－You must answer each question in the space provided for that question．If you require extra space，use an AQA supplementary answer book；do not use the space provided for a different question．
－Do not write outside the box around each page．
－Show all necessary working；otherwise marks for method may be lost．
－Do all rough work in this book．Cross through any work that you do not want to be marked．
－The use of calculators is not permitted．

Information

－The marks for questions are shown in brackets．
－The maximum mark for this paper is 75 ．

Advice

－Unless stated otherwise，you may quote formulae，without proof， from the booklet．
－You do not necessarily need to use all the space provided．

1 The point A has coordinates $(-3,2)$ and the point B has coordinates $(7, k)$ ．
The line $A B$ has equation $3 x+5 y=1$ ．
（a）（i）Show that $k=-4$ ．
（ii）Hence find the coordinates of the midpoint of $A B$ ．
（b）Find the gradient of $A B$ ．
（c）A line which passes through the point A is perpendicular to the line $A B$ ．Find an equation of this line，giving your answer in the form $p x+q y+r=0$ ，where p, q and r are integers．
（d）The line $A B$ ，with equation $3 x+5 y=1$ ，intersects the line $5 x+8 y=4$ at the point C ．Find the coordinates of C ．
（3 marks）

2 A bird flies from a tree．At time t seconds，the bird＇s height，y metres，above the horizontal ground is given by

$$
y=\frac{1}{8} t^{4}-t^{2}+5, \quad 0 \leqslant t \leqslant 4
$$

（a）Find $\frac{\mathrm{d} y}{\mathrm{~d} t}$ ．
（b）（i）Find the rate of change of height of the bird in metres per second when $t=1$ ．
（2 marks）
（ii）Determine，with a reason，whether the bird＇s height above the horizontal ground is increasing or decreasing when $t=1$ ．
（c）（i）Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$ when $t=2$ ．
（ii）Given that y has a stationary value when $t=2$ ，state whether this is a maximum value or a minimum value．

3 （a）（i）Express $\sqrt{18}$ in the form $k \sqrt{2}$ ，where k is an integer．
（ii）Simplify $\frac{\sqrt{8}}{\sqrt{18}+\sqrt{32}}$ ．
（b）Express $\frac{7 \sqrt{2}-\sqrt{3}}{2 \sqrt{2}-\sqrt{3}}$ in the form $m+\sqrt{n}$ ，where m and n are integers．

4 （a）（i）Express $x^{2}-6 x+11$ in the form $(x-p)^{2}+q$ ．
（ii）Use the result from part（a）（i）to show that the equation $x^{2}-6 x+11=0$ has no real solutions．
（b）A curve has equation $y=x^{2}-6 x+11$ ．
（i）Find the coordinates of the vertex of the curve．
（ii）Sketch the curve，indicating the value of y where the curve crosses the y－axis．
（iii）Describe the geometrical transformation that maps the curve with equation $y=x^{2}-6 x+11$ onto the curve with equation $y=x^{2}$ ．

5 The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}-4 x^{2}-3 x+18
$$

（a）Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x+1$ ．
（b）（i）Use the Factor Theorem to show that $x-3$ is a factor of $\mathrm{p}(x)$ ．
（ii）Express $\mathrm{p}(x)$ as a product of linear factors．
（c）Sketch the curve with equation $y=x^{3}-4 x^{2}-3 x+18$ ，stating the values of x where the curve meets the x－axis．

6 The gradient，$\frac{\mathrm{d} y}{\mathrm{~d} x}$ ，of a curve at the point (x, y) is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{4}-6 x^{2}+5
$$

The curve passes through the point $P(1,4)$ ．
（a）Find the equation of the tangent to the curve at the point P ，giving your answer in the form $y=m x+c$ ．
（b）Find the equation of the curve．

7 A circle with centre $C(-3,2)$ has equation

$$
x^{2}+y^{2}+6 x-4 y=12
$$

（a）Find the y－coordinates of the points where the circle crosses the y－axis．
（b）Find the radius of the circle．
（c）The point $P(2,5)$ lies outside the circle．
（i）Find the length of $C P$ ，giving your answer in the form \sqrt{n} ，where n is an integer．
（ii）The point Q lies on the circle so that $P Q$ is a tangent to the circle．Find the length of $P Q$ ．
（2 marks）

8 A curve has equation $y=2 x^{2}-x-1$ and a line has equation $y=k(2 x-3)$ ，where k is a constant．
（a）Show that the x－coordinate of any point of intersection of the curve and the line satisfies the equation

$$
2 x^{2}-(2 k+1) x+3 k-1=0
$$

（b）The curve and the line intersect at two distinct points．
（i）Show that $4 k^{2}-20 k+9>0$ ．
（ii）Find the possible values of k ．

