Mark Scheme 4724 June 2005

47

4724

Mark Scheme

June 2005

1	(Quotient =) $x^2 + 2x + 2$ (Remainder =) $0x - 3$ Allow without working	B1 M1 A1 A1 4	For correct leading term x^2 in quotient For evidence of division/identity process For correct quotient For correct remainder. The '0x' need not be written but must be clearly derived. 4
2	$x \sin x - \int \sin x dx$ (= x sin x + cos x) Answer = $\frac{1}{2} \pi - 1$	M1 A1 B1 M1 A1 5	For attempt at parts going correct way (u = x, dv = cos x and f(x) +/- $\int g(x) (dx)$ For both terms correct Indic anywhere that $\int \sin x dx = -\cos x$ For correct method of limits For correct exact answer ISW 5
3	(i) r = $(2i-3j+k \text{ or } -i-2j-4k) + t(3i-j+5k)$ (ii) $L(2)$ (r) = $3i+2j-9k+s(4i-4j+5k)$ L(1)&L(2) must be of form r = a + tb 2+3t=3+4s, -3-t=2-4s, 1+5t=-9+5s or suitable equivalences (t,s) = $(+/-3,2)$ or $(-/+1,1)$ or $(-/+9,-7)$ or $(+/-4,2)$ or $(0,1)$ or $(-/+8,-7)$ Basic check other eqn & interp $$	M1 A1 2 M1 M1 M1 A1 B1 5	For (either point) + t(diff betw vectors) Completely correct including r =. AEF For point + (s or t) direction vector For 2/3 eqns with 2 different parameters For solving any relevant pair of eqns For both parameters correct 7
4	(i) $dx = \sec^2\theta \ d\theta$ AEF Indefinite integral = $\int \cos^2\theta \ d\theta$ (ii) = $k\int +/-1 +/-\cos 2\theta \ d\theta$ $\frac{1}{2}[\theta + \frac{1}{2}\sin 2\theta]$ Limits = $\frac{1}{4}\pi(\operatorname{accept} 45) \ \text{and} \ 0$ ($\pi + 2$)/8 AEF	M1 A1 3 M1 A1 M1 A1 4	Attempt to connect dx , $d\theta$ (not $dx = d\theta$) For $dx = \sec^2\theta \ d\theta$ or equiv correctly used With at least one intermed step AG "Satis" attempt to change to double angle Correct attempt + correct integration New limits for θ or resubstituting Ignore decimals after correct answer 7 Single 'parts' + $\sin^2\theta = 1 - \cos^2\theta$ acceptable
5	(i)OD=OA+AD or OB+BC+CD AEF AD = BC or CD = BA (a + c - b) = 2j + k (ii) AB.CB = $ AB CB \cos \theta$ Scalar product of <u>any</u> 2 vectors Magnitude of <u>any</u> vector 94°(94.386) or 1.65 (1.647)	M1 A1 3 M1 M1 M1 A1 4	Connect OD & $2/3/4$ vectors in their diag Or similar ,from their diag [i.e.if diag mislabelled, M1A1A0 possible] Or AB.BC i.e.scalar prod for correct pair 2 + 3 - 6 = -1 is expected $\sqrt{19}$ or 3 expected Accept 86°(85.614) or 1.49(424) 7
6	(i) For $d/dx (y^2) = 2y dy/dx$ Using $d(uv) = u dv + v du$ $2xy dy/dx + y^2 = 2 + 3 dy/dx$ $dy/dx = (2 - y^2)/(2xy - 3)$	B1 M1 A1 M1	Solving an equation, with at least 2 dy/dx terms, for dy/dx ; dy/dx on one side, non dy/dx on other. AG

4724

Mark Scheme

June 2005

	(ii) Stating/using $2xy - 3 = 0$ Attempt to eliminate x or y $8x^2 = -9$ or $y^2 = -2$	B1 M1 A1 3	No use of 2 - y^2 in this part. Between $2xy - 3 = 0$ & eqn of curve Together with suitable finish 8
7	(i) $dy / dx = (dy/dt) / (dx/dt)$ = $(-1/t^2) / 2t$ as unsimplified expression = $-1 / 2t^3$ as simplified expression (ii) $(4,-1/2) \rightarrow t = -2 \text{ only}$ Satis attempt to find equation of tgt x - 16y = 12 only (iii) $t^3 - 12t - 16 = 0 \text{ or } 16y^3 + 12y^2 - 1 = 0$ $\text{or } x^3 - 24x^2 + 144x - 256 = 0$ t = 4 (only) ISW giving cartesian coords	M1 A1 3 B1 M1 A1 3 M1 A1 B2 4	(S.R.Award M1 for attempt to change to cartesian eqn & differentiate + A1 for dy/dx or dx/dy in terms of x or y) Not 1/-2t ⁹ . Not in terms of x &/or y. Using $t = -2$ or 2 AG For substituting (t^2 ,1/t) into tgt eqn <u>or</u> solving simult tgt & their cartes eqns For simplified equiv non-fract cubic S.R. Award B1 for "4 or -2". S.R. If B0, award M1 for clear indic of method of soln of correct eqn. 10
8	(i) $3x+4 \equiv A(2+x)^2+B(2+x)(1+x) + C(1+x)$ A = 1 C = 2 A+B = 0 or 4A+3B+C=3 or 4A+2B+C = 4 B = -1 (ii) $1 - x + x^2$ $1 - \frac{1}{2}x + \frac{1}{4}x^2$ 1 - x $+ \frac{3}{4}x^2$ $1 - 5/4x + 5/4x^2$	M1 A/B1 A1 A1 5 B1 B1 B1 B1 B1 5 B1 1	Accept \equiv or \equiv If identity used, award 'A' mark, if cover-up rule used, award 'B' mark. <u>Any</u> correct eqn for <i>B</i> from identity Expansion of $(1 + x)^{-1}$ Expansion of $(1 + \frac{1}{2}x)^{-1}$ First 2 terms of $(1 + \frac{1}{2}x)^{-2}$ Third term of $(1 + \frac{1}{2}x)^{-2}$ Complete correct expansion <u>If partial fractions not used</u> Award B1 for expansion of $(1 + \frac{1}{2}x)^{-2}$, and B1 for 1-5/4x & B1 for+5/4x ² <u>Or</u> if denom expanded to give $a+bx+cx^{2}$ with $a=4.b=8,c=5$, award B1 Expansion of $[1+(b/a)x+(c/a)x^{2}]^{-1} =$ $1 - (b/a)x + (-c/a + b^{2}/a^{2})x^{2}$ B1+B1 Final ans $= (1 - 5/4x + 5/4x^{2})B1+B1$ Other inequalities to be discarded. 11
	(iii) – 1 < <i>x</i> < 1 AEF		
9	k = const of proportionality - = falling, $d\theta/dt$ = rate of change $\theta - 20$ = diff betw obj & surround temp (ii) $\int 1/(\theta - 20) d\theta = -k \int dt$ $\ln(\theta - 20) = -kt + c$ Subst (θ, t) = (100,0) or (68,5)	B2 2 M1 A1A1 M1 A1	All 4 items (first two may be linked) S.R. Award B1 for any 2 items For separating variables For integ each side (c not essential) Dep on 'c' being involved [or_M2 for limits (100,0) (68,5) + A1 for

4724

Mark Scheme

June 2005

c = ln 80	A1	k]
k = 1/5 ln 5/3	M1	
(1, 5).	A1 8	AG
$\theta = 20 + 80e^{-(\frac{1}{5}\ln\frac{5}{3})t}$		
	M1	Subst into AEF of given eqn & solve
(iii) Substitute $\theta = 68 - 32$	A1	Accept 15.7 or 15.8
t = 15.75	B1 3	f.t. only if θ = their (68 – 32) or 32 13
Extra time = 10.75, √their 15.75 – 5		