1	（Quotient＝）$x^{2}+2 x+2$ （Remainder＝） $0 x-3$ Allow without working	B1 M1 A1 A1 4	For correct leading term x^{2} in quotient For evidence of division／identity process For correct quotient For correct remainder．The＇ $0 x$＇need not be written but must be clearly derived． 4
2	$\begin{aligned} & x \sin x-\int \sin x \mathrm{~d} x \\ & (=x \sin x+\cos x) \\ & \\ & \text { Answer }=1 / 2 \pi-1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } 5 \end{aligned}$	For attempt at parts going correct way （ $u=x, d v=\cos x$ and $f(x)+/-\int g(x)(d x)$ For both terms correct Indic anywhere that $\int \sin x \mathrm{~d} x=-\cos x$ For correct method of limits For correct exact answer ISW
3	（i） $\mathbf{r}=(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ or $\mathbf{- i}-2 \mathbf{j}-4 \mathbf{k})+\mathrm{t}(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})$ （ii）$L(2)(\mathbf{r})=3 \mathbf{i}+2 \mathbf{j}-9 \mathbf{k}+\mathbf{s}(4 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k})$ $L(1) \& L(2)$ must be of form $\mathbf{r}=\mathbf{a}+\mathrm{tb}$ $2+3 t=3+4 s,-3-t=2-4 s, 1+5 t=-9+5 s$ or suitable equivalences $(\mathrm{t}, \mathrm{s})=(+/-3,2)$ or $(-/+1,1)$ or $(-/+9,-7)$ or $(+/-4,2)$ or $(0,1)$ or $(-/+8,-7)$ Basic check other eqn \＆interp $\sqrt{ }$	M1 A1 2 M1 M1 M1 A1 B1 5	For（either point）$+t$（diff betw vectors） Completely correct including $\mathbf{r}=$ ．AEF For point＋（s or t）direction vector For $2 / 3$ eqns with 2 different parameters For solving any relevant pair of eqns For both parameters correct
4	$\begin{aligned} & \text { (i) } \mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta \quad \mathrm{dEF} \\ & \text { Indefinite integral }=\int \cos ^{2} \theta \mathrm{~d} \theta \\ & \text { (ii) }=k \int+/-1+/-\cos 2 \theta \mathrm{~d} \theta \\ & 1 / 2[\theta+1 / 2 \sin 2 \theta] \\ & \text { Limits }=1 / 4 \pi(\text { accept } 45) \text { and } 0 \\ & (\pi+2) / 8 \quad \text { AEF } \end{aligned}$	M1 A1 A1 3 M1 A1 M1 A1 4	Attempt to connect $\mathrm{d} x, \mathrm{~d} \theta$（not $\mathrm{dx}=\mathrm{d} \theta$ ） For $\mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta$ or equiv correctly used With at least one intermed step AG ＂Satis＂attempt to change to double angle Correct attempt＋correct integration New limits for θ or resubstituting Ignore decimals after correct answer 7 Single＇parts＇$+\sin ^{2} \theta=1-\cos ^{2} \theta$ acceptable
5	$\begin{aligned} & \text { (i)OD=OA+AD or OB+BC+CD AEF } \\ & A D=B C \text { or } C D=B A \\ & (\mathbf{a}+\mathbf{c}-\mathbf{b})=2 j+k \end{aligned}$ （ii）$A B \cdot C B=\|A B\|\|C B\| \cos \theta$ Scalar product of any 2 vectors Magnitude of any vector $94^{\circ}(94.386 \ldots)$ or 1.65 （1．647．．．）	M1 A1 A1 3 M1 M1 M1 A1 4	Connect OD \＆2／3／4 vectors in their diag Or similar ，from their diag ［i．e．if diag mislabelled，M1A1A0 possible］ Or AB．BC i．e．scalar prod for correct pair $2+3-6=-1$ is expected $\sqrt{ } 19$ or 3 expected Accept 86°（85．614．．．）or 1．49（424．．） 7
6	（i）For $\mathrm{d} / \mathrm{d} x\left(y^{2}\right)=2 y \mathrm{~d} y / \mathrm{d} x$ Using $\mathrm{d}(\mathrm{uv})=\mathrm{udv}+\mathrm{v} d u$ $2 x y \mathrm{~d} y / \mathrm{d} x+y^{2}=2+3 \mathrm{~d} y / \mathrm{d} x$ $\mathrm{d} y / \mathrm{d} x=\left(2-y^{2}\right) /(2 x y-3)$	B1 M1 A1 M1 A1 5	Solving an equation，with at least $2 \mathrm{dy} / \mathrm{dx}$ terms，for $\mathrm{d} y / \mathrm{d} x ; \mathrm{d} y / \mathrm{d} x$ on one side，non $\mathrm{d} y / \mathrm{d} x$ on other． AG

	（ii）Stating／using $2 x y-3=0$ Attempt to eliminate x or y $8 x^{2}=-9$ or $y^{2}=-2$	B1 M1 A1 3	No use of $2-y^{2}$ in this part． Between 2xy－3＝0\＆eqn of curve Together with suitable finish
7	（i） $\mathrm{d} y / \mathrm{d} x=(\mathrm{d} y / \mathrm{d} t) /(\mathrm{d} x / \mathrm{d} t)$ $=\left(-1 / t^{2}\right) / 2 t$ as unsimplified expression $=-1 / 2 t^{3}$ as simplified expression （ii）$(4,-1 / 2) \rightarrow t=-2$ only Satis attempt to find equation of tgt $x-16 y=12$ only （iii） $t^{3}-12 t-16=0 \text { or } 16 y^{3}+12 y^{2}-1=0$ or $x^{3}-24 x^{2}+144 x-256=0$ $t=4$（only）ISW giving cartesian coords	M1 A1 A1 3 B1 M1 A1 3 M1 A1 B2 4	（S．R．Award M1 for attempt to change to cartesian eqn \＆differentiate +A 1 for $\mathrm{d} y / \mathrm{d} x$ or $\mathrm{d} x / \mathrm{d} y$ in terms of x or y ） Not $1 /-2 t^{3}$ ．Not in terms of $x \& /$ or y ． Using $t=-2$ or 2 AG For substituting（ $\left.t^{2}, 1 / t\right)$ into tgt eqn or solving simult tgt \＆their cartes eqns For simplified equiv non－fract cubic S．R．Award B1 for＂4 or－2＂． S．R．If B0，award M1 for clear indic of method of soln of correct eqn． 10
8	$\begin{aligned} & \text { (i) } 3 x+4 \equiv A(2+x)^{2}+B(2+x)(1+x)+ \\ & C(1+x) \\ & A=1 \\ & C=2 \\ & A+B=0 \text { or } 4 A+3 B+C=3 \text { or } 4 A+2 B+C \\ & =4 \\ & B=-1 \\ & \text { (ii) } 1-x+x^{2} \\ & 1-1 / 2 x+1 / 4 x^{2} \\ & 1-x \\ & +3 / 4 x^{2} \\ & 1-5 / 4 x+5 / 4 x^{2} \end{aligned}$ （iii）$-1<x<1$ AEF	M1 A／B1 A／B1 A1 A1 5 B1 B1 B1 B1 B1 5 B1 1	Accept \equiv or＝ If identity used，award＇A＇mark，if cover－up rule used，award＇B＇mark． Any correct eqn for B from identity Expansion of $(1+x)^{\overline{1}}$ Expansion of $(1+1 / 2 x)^{1}$ First 2 terms of $(1+1 / 2 x)^{2}$ Third term of $(1+1 / 2 x)^{2}$ Complete correct expansion If partial fractions not used Award B1 for expansion of $(1+x)^{1}$ B1＋B1 for expansion of $(1+1 / 2 x)^{2}$ ， and B1 for $1-5 / 4 x \ldots$ \＆B1 for．．．$+5 / 4 x^{2}$ Or if denom expanded to give $a+b x+c x^{2}$ with $a=4 . b=8, c=5$ ，award $B 1$ Expansion of $\left[1+(\mathrm{b} / \mathrm{a}\} x+(\mathrm{c} / \mathrm{a}) x^{2}\right]^{1}=$ $1-(b / a) x+\ldots\left(-c / a+b^{2} / a^{2}\right) x^{2} \quad B 1+B 1$ Final ans $=\left(1-5 / 4 x \ldots+5 / 4 x^{2}\right) B 1+B 1$ Other inequalities to be discarded． 11
9	$\mathrm{k}=$ const of proportionality －＝falling， $\mathrm{d} \theta / \mathrm{d} t=$ rate of change $\theta-20=$ diff betw obj \＆surround temp $\begin{aligned} & \text { (ii) } \int 1 /(\theta-20) \mathrm{d} \theta=-k \int \mathrm{~d} t \\ & \ln (\theta-20)=-k t+c \\ & \text { Subst }(\theta, t)=(100,0) \text { or }(68,5) \end{aligned}$	B2 2 M1 A1A1 M1 A1	All 4 items（first two may be linked） S．R．Award B1 for any 2 items For separating variables For integ each side（c not essential） Dep on＇c＇being involved ［or M2 for limits $(100,0)(68,5)+$ A1 for

