PhysicsAndMathsTutor.com		
Paper Reference (complete below) Centre No. Surname	Init	ial(s)
6664/01 Candidate No. Signature		
Paper Reference(s)	Examiner's u	se only
6664		
Edexcel GCE	Team Leader's	use only
Core Mathematics C2		
Advanced Subsidiary	Question Number	
Mock Paper	1	
•	2	
Time: 1 hour 30 minutes	3	
Time. I nour 50 minutes	4	
Materials required for examination Mathematical Formulae Items included with question papers Nil	5	
	6	
Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT	7	
use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.	8	
	9	
Instructions to Candidates	10	
In the boxes above, write your cente number, candidate number, your surname, initials and		
signature. You must write your answer for each question in the space following the question.		+
If you need more space to complete your answer to any question, use additional answer sheets.		
When a calculator is used, the answer should be given to an appropriate degree of accuracy.		
Information for Candidates		
A booklet 'mathematical Formulae and Statistical Tables' is provided.		
Full marks may be obtained for answers to ALL questions.		
This paper has ten questions.		

Advice to Candidates

Answers without working may gain no credit.

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner.

Turn over

Total

Leave
blank

1.	$f(x) = 2x^3 - x^2 + px + 6,$	blani
	where p is a constant.	
	Given that $(x - 1)$ is a factor of $f(x)$, find	
	(a) the value of p ,	
	(b) the remainder when $f(x)$ is divided by $(2x + 1)$.	
	(2)	
		+

Leave
blank

2. (a) Find $\int \left(3+4x^3-\frac{2}{x^2}\right) dx.$

(3)

(b) Hence evaluate $\int_{1}^{2} \left(3 + 4x^3 - \frac{2}{x^2} \right) dx.$

(2)

3

		Leave blank
.	Figure 1	
	B 6 cm 0.4	
	$A ext{ 6 cm } D ext{ 6 cm } C$	
	Figure 1 shows a logo ABD.	
	The logo is formed from triangle <i>ABC</i> . The mid-point of <i>AC</i> is <i>D</i> and $BC = AD = DC = 6$ cm. $\angle BCA = 0.4$ radians. The curve <i>BD</i> is an arc of a circle with centre <i>C</i> and radius 6 cm.	
	(a) Write down the length of the arc <i>BD</i> .	
	(1) (b) Find the length of <i>AB</i> .	
	(3)	
	(c) Write down the perimeter of the logo <i>ABD</i> , giving your answer to 3 significant figures. (1)	

Solve		
201.0	$2 \log_3 x - \log_3 (x - 2) = 2, \qquad x > 2.$	(6)

5

5. The second and fifth terms of a geometric series are 9 and 1.125 respectively. For this series find (a) the value of the common ratio, (b) the first term, (c) the sum to infinity. (2)				Leav
 (a) the value of the common ratio, (b) the first term, (c) the sum to infinity. 	5.	The second and fifth terms of a geometric series are 9 and 1.125 respectively.		
(b) the first term, (c) the sum to infinity.		For this series find		
(b) the first term,(c) the sum to infinity.		(a) the value of the common ratio,	(3)	
(c) the sum to infinity.		(b) the first term,	(3)	
			(2)	
		(c) the sum to infinity.	(2)	
I e				

		Leave blank
5.	continued	
		1

7

I t
(2)
(2)
(3)

		Leave
6.	continued	blank
0.		
		-
		1 1

The first four terms, in ascending powers of x, of the binomial expansion of $(1 + kx)^n$	are
$1 + Ax + Bx^2 + Bx^3 + \dots,$	
where k is a positive constant and A , B and n are positive integers.	
(a) By considering the coefficients of x^2 and x^3 , show that $3 = (n-2) k$.	
	(4)
Given that $A = 4$,	
(b) find the value of n and the value of k .	
	(4)

		Leave blank
7.	continued	Dialik
		1

nearest degree. b) Find the exact values of θ in the in	nterval $0 \le \theta < 360^{\circ}$ for which	(4)
	$3 \tan \theta = 2 \cos \theta$.	
	$3 \tan \theta - 2 \cos \theta$.	(6)

		Leave blank
8.	continued	Clarin
		1

		L
A pencil h	nolder is in the shape of an open circular cylinder of radius r cm and height h cm.	bl
The surface	e area of the cylinder (including the base) is 250 cm ² .	
(a) Show	that the volume, $V \text{cm}^3$, of the cylinder is given by $V = 125r - \frac{\pi r^3}{2}$.	
	(4)	
(b) Use ca	alculus to find the value of r for which V has a stationary value. (3)	
(c) Prove	that the value of r you found in part (b) gives a maximum value for V . (2)	
(d) Calcul	late, to the nearest cm ³ , the maximum volume of the pencil holder.	
(u) Calcul	(2)	

continued		

15

Figure 2

Leave blank

10.

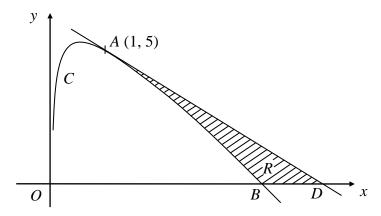


Figure 2 shows part of the curve C with equation

$$y = 9 - 2x - \frac{2}{\sqrt{x}}, \qquad x > 0.$$

The point A(1, 5) lies on C and the curve crosses the x-axis at B(b, 0), where b is a constant and b > 0.

(a) Verify that b = 4.

(1)

The tangent to C at the point A cuts the x-axis at the point D, as shown in Fig. 2.

(b) Show that an equation of the tangent to C at A is y + x = 6.

(4)

(c) Find the coordinates of the point D.

(1)

The shaded region R, shown in Fig. 2, is bounded by C, the line AD and the x-axis.

(d)	Use	integ	gration	to	find	the	area	of	R
(u)	OSC	meg	,ration	ω	IIIIu	uic	arca	ΟI	1

(6)

continued	

17

PhysicsAndMathsTutor.com Leave blank continued **10.**

END