Mark Scheme 4724 June 2007

（i）Correct format $\frac{A}{x+2}+\frac{B}{x-3}$
$A=1$ and $B=2$
（ii）$-A(x+2)^{-2}-B(x-3)^{-2}$

Convincing statement that each denom >0 State whole $\exp <0$
for both
accept ≥ 0 ．Do not accept $x^{2}>0$ ．
Dep on previous 4 marks．
s．o．i．eg e $+(-2 x+2) \mathrm{e}^{x}$
Tolerate（their value for $x=1$ ）（ -0 ）
Allow $0.718 \rightarrow$ M1
where $k=\pi, 2 \pi$ or 1 ；limits necessary
eg $\int+/-1+/-\cos 2 x(d x)$ or single integ by parts \＆connect to $\int \sin ^{2} x(\mathrm{~d} x)$
$\int \sin ^{2} x(\mathrm{~d} x)=\frac{1}{2} \int 1-\cos 2 x(\mathrm{~d} x)$
$\int \cos 2 x(\mathrm{~d} x)=\frac{1}{2} \sin 2 x$
Use limits correctly
Volume $=\frac{1}{2} \pi^{2} \quad$ WWW Exact answer
（i） $\begin{aligned} & \left(1+\frac{x}{2}\right)^{-2} \\ & =1+(-2)\left(\frac{x}{2}\right)+\frac{-2 .-3}{2}\left(\frac{x}{2}\right)^{2}+\frac{-2 \cdot-3 .-4}{3!}\left(\frac{x}{2}\right)^{3}\end{aligned}$
$=1-x$
$+\frac{3}{4} x^{2}-\frac{1}{2} x^{3}$
$(2+x)^{-2}=\frac{1}{4}\left(\right.$ their exp of $\left.(1+a x)^{-2}\right)$ mult out
$|x|<2$ or $-2<x<2$（but not $\left|\frac{1}{2} x\right|<1$ ）
（ii）If（i）is $a+b x+c x^{2}+d x^{3}$ evaluate $b+d$ $-\frac{3}{8}\left(x^{3}\right)$

Clear indication of method of ≥ 3 terms

First two terms，not dependent on M1
For both third and fourth terms
Correct：$\frac{1}{4}-\frac{1}{4} x+\frac{3}{16} x^{2}-\frac{1}{8} x^{3}$

Follow－through from $b+d$

5（i）$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
$=\frac{-4 \sin 2 t}{-\sin t}$
$=8 \cos t$
≤ 8
AG
（ii）Use $\cos 2 t=2 \cos ^{2} t+/-1$ or $1-2 \cos ^{2} t$
Use correct version $\cos 2 t=2 \cos ^{2} t-1$
Produce WWW $y=4 x^{2}+1 \quad$ AG
（iii）U－shaped parabola abve x－axis，sym abt y－axis Portion between $(-1,5)$ and $(1,5)$
N．B．If（ii）answered or quoted before（i）attempted，

M1

Accept $\frac{4 \sin 2 t}{\sin t} W W W$
with brief explanation eg $\cos t \leq 1$
If starting with $y=4 x^{2}+1$ ，then
Subst $x=\cos t, y=3+2 \cos 2 t \quad$ M1
Either substitute a formula for $\cos 2 t \mathrm{M} 1$
Obtain $0=0$ or $4 \cos ^{2} t+1=4 \cos ^{2} t+1$ A1
Or Manip to give formula for $\cos 2 t \quad \mathrm{M} 1$
Obtain corr formula \＆say it＇s correct A1
Any labelling must be correct
2 either $x= \pm 1$ or $y=5$ must be marked
（i） B 2 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x+\mathrm{B} 1, \mathrm{~B} 1$ if earned． 9

6
（i）$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
Using $\mathrm{d}(u v)=u \mathrm{~d} v+v \mathrm{~d} u$ for the（3）xy term $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}+3 x y+4 y^{2}\right)=2 x+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ \＆subst $(x, y)=(2,3)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{13}{30}$
Grad normal $=\frac{30}{13} \quad$ follow－through
Find equ any line thro $(2,3)$ with any num gra $30 x-13 y-21=0$ AEF

B1
M1
or v．v．Subst now or at normal eqn stage；
（ M1 dep on either／both B1 M1 earned）
Implied if grad normal $=\frac{30}{13}$
This f．t．mark awarded only if numerical

No fractions in final answer

Stated or in relevant position in division
Accept $\frac{x}{x^{2}+4}$ as remainder
$2 x+3+\frac{x}{x^{2}+4}$

Ignore any integration of $\frac{D}{x^{2}+4}$
logs need not be combined．

8
（i）Sep variables eg $\int \frac{1}{6-h}(\mathrm{~d} h)=\int \frac{1}{20}(\mathrm{~d} t)$

＊M1	$\text { s.o.i. } \underline{\mathrm{Or}} \frac{\mathrm{~d} t}{\mathrm{~d} h}=\frac{20}{6-h} \rightarrow \mathrm{M} 1$
A1	\＆then $t=-20 \ln (6-h)(+\mathrm{c}) \rightarrow \mathrm{A} 1+\mathrm{A} 1$
A1	
dep＊M1	
A1	or（20）In 5 if on LHS
A1 6	Must see $\ln 5-\ln (6-h)$
B1 1	Accept 4．5， $4 \frac{1}{2}$
M1	or $\frac{6-h}{5}=\mathrm{e}^{-0.5}$ or suitable $\frac{1}{2}$－way stage
A1 2	$6-5 e^{-0,5}$ or $6-e^{1.109}$

［In（ii），（iii）accept non－decimal（exact）answers but－1 once．］
Accept truncated values in（ii），（iii）．
（iv）Any indication of（approximately） 6 （m）
B1 $\quad 1$

