Mark Scheme 4724 June 2007

4724	Mark Scheme		June 2007
1	(i) Correct format $\frac{A}{Y+2} + \frac{B}{Y-3}$	M1	s.o.i. in answer
	A=1 and $B=2$	A1 2	for both
	(ii) $-A(x+2)^{-2}-B(x-3)^{-2}$ f.t.	√A1	
	Convincing statement that each denom > 0	B1	accept ≥ 0 . Do not accept $x^2 > 0$.
	State whole exp < 0 AG	B1 3	Dep on previous 4 marks. 5
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + /- \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1	
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1	s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	dep*M1	Tolerate (their value for $x = 1$) (-0)
	e - 2 15W Exact answer only	A1 6	Allow 0.718 → M1 6
3	$Volume = (k) \int_{0}^{\pi} \sin^{2} x (dx)$	B1	where $k = \pi, 2\pi$ or 1; limits necessary
	0		
	Suitable method for integrating sin ² x	*M1	$eg \int +/-1+/-\cos 2x (dx) \text{ or single}$
			integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x (dx) = \frac{1}{2} \int 1 - \cos 2x (dx)$	A1	or $-\sin x \cos x + \int \cos^2 x (\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1	
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1 6	Beware : wrong working leading to $\frac{1}{2}\pi^2$
			<u> </u>
4	$\left(1 + \frac{x}{2}\right)^{-2}$	M1	Clear indication of method of ≥ 3 terms
	$= 1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{-23}{2}\left(\frac{x}{2}\right)^2 + \frac{-234}{3!}\left(\frac{x}{2}\right)^3$		
	$= 1 - X + \frac{3}{4} X^2 - \frac{1}{2} X^3$	B1 A1	First two terms, not dependent on M1 For both third and fourth terms
	7 2		
	$(2+x)^{-2} = \frac{1}{4} (\text{their exp of } (1+ax)^{-2}) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2} x \right < 1)$	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8} \left(x^3\right)$	√A1 2	Follow-through from $b+d$
			7

4724 Mark Scheme June 2007

5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	
	$=\frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4 \sin 2t}{\sin t}$ WWW
	$= 8 \cos t$	A1	
	≤8 AG		with brief explanation eg $\cos t \le 1$
	(ii) Use $\cos 2t = 2\cos^2 t + /-1 \text{ or } 1 - 2\cos^2 t$	M1	If starting with $y = 4x^2 + 1$, then
	Use correct version $\cos 2t = 2\cos^2 t - 1$	A1	Subst $x = \cos t, y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG	A1 3	Either substitute a formula for cos 2t M1
	(iii) U-shaped parabola abve x-axis, sym abt y-axis Portion between $(-1,5)$ and $(1,5)$	B1 B1 2	Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain corr formula & say it's correct A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,	allow in par	(i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned. 9
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
	$\frac{d}{dx}(x^2 + 3xy + 4y^2) = 2x + 3x\frac{dy}{dx} + 3y + 8y\frac{dy}{dx}$	A1	
	Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$	M1	or v.v. Subst now or at normal eqn stage;
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1	(M1 dep on either/both B1 M1 earned) Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
	Find equ <u>any</u> line thro (2,3) with <u>any</u> num grad $30x - 13y - 21 = 0$ AEF	M1 A1 8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$ <u>Suff evidence</u> of division or identity process Quotient = $2x + 3$	B1 M1 A1	Stated or in relevant position in division
	Remainder = x	A1 4	Accept $\frac{x}{x^2+4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$		$2x+3+\frac{x}{x^2+4}$
	(iii) Working with their expression in part (ii)	.√D4	
	their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1	
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1	Ignore any integration of $\frac{D}{x^2 + 4}$
	$k = \frac{1}{2}C$	√A1	
	Limits used correctly throughout	M1	
	$14 + \frac{1}{2} \ln \frac{13}{5}$	A1 5	logs need not be combined.
			10

4724	Mark Scheme		June 2007	
8	(i) Sep variables eg $\int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. $\underline{Or} \frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1		
	Correct value of their $c = -(20) \ln 5$ WWW	A1		or (20)In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1	6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1	1	Accept 4.5, 4 ½
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1		5 -
	h = 2.97(2.9673467)[In (ii),(iii) accept non-decimal (exact) answersAccept truncated values in (ii),(iii).	A1 but –1 c	2 onc	
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only	M1		
	Correct method for scalar product	M1		of any two vectors $(-6+24-4=14)$
	Correct method for magnitude	M1		of <u>any</u> vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been general	A1 erated by	4 5i	,
	(ii) Indication that relevant vectors are parallel	M1		$-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} & 3\mathbf{i} + c\mathbf{j} + \mathbf{k}$ with some indic of method of attack
	c = -4	A1	2	eg $-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} = \lambda(3\mathbf{i} + c\mathbf{j} + \mathbf{k})$ $c = -4 \text{ WW} \rightarrow B2$
	(iii) Produce 2/3 equations containing <i>t,u</i> (& c)	M1		eg $3+t=2+3u,-8+3t=1+cu$ and $2t=3+u$
	Solve the 2 equations not containing 'c' $t = 2$, $u = 1$	M1 A1		
	Subst their (t,u) into equation containing c $c = -3$	M1 A1	5	
	Alternative method for final 4 marks			
	Solve two equations, one with 'c', for <i>t</i> and <i>u</i> in terms of c, and substitute into third equation	(M2)		
	c = -3	(Δ2)		11

(M2)(A2)

11

c = -3