

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

Paper 7 MARK SCHEME Maximum Mark: 50 9709/72 May/June 2016

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of 6 printed pages.

CAMBRIDGE International Examinations

[Turn over

© UCLES 2016

或添加微信号

15317669092

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	72

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt[]{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper	
	Cambridge International A Level – May/June 2016	9709	72	

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
РА	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See (Other Solution (the candidate makes a better attempt at the same question)
SD	Special Puling (detailing the mark to be given for a specific wrong solution, or a case

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through $\sqrt[4]{}$ ' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA 1 This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

P	age 4	1	Mark Scheme			Syllabus	Paper
	<u> </u>		Cambridge International A Level –	May/Ju	ne 2016	9709	72
-				1			
1			$\frac{6.2}{\sqrt{50}}$ or $\frac{6.2^2}{50}$	B1	seen or implied		
			$\frac{51-53}{62\pm\sqrt{50}}$ (= -2.281)	M1	allow without ÷	-√50	
			$P(z > `-2.281') = \phi(`2.281') = 0.989 (3 sf)$	M1 A1 [4	for finding corr working as final answer	ect area cons	istent with
2	(i)		Conclude less than 90% satisfied when this is not true oe	B11	In context		
	(ii)		$1 - (0.9^{15} + 15 \times 0.9^{14} \times 0.1) + {}^{15}C_2 \times 0.9^{13} \times 0.1^2 + {}^{15}C_3 \times 0.9^{12} \times 0.1^3) = 0.0556 (3 \text{ sf}) \text{ or } 0.0555$	M1 M1 A1 [3]	Attempt (1–)P(2 end error Attempt fully co		-
3	(i)		Pop too big or takes too long oe or testing destroys articles oe	B1 [1	or too expensive or pop inaccess		
	(ii)	(a)	z = 1.96	B1	seen		
			$65.7 \pm z \times \frac{\sqrt{15}}{10}$	M1	Expression of c	orrect form (must be 'z'
			= 64.9 to 66.5 (3 sf)	A1 [3			
		(b)	CI does not include 64.7		allow 64.7 not v	within CI	
			Probably has affected (or increased) mean bounce ht.	B1 √ [1	both needed. ft	their CI ft 65	.7/64.7 mix
4			$H_0: \lambda \text{ (or } \mu) = 42$		Or pop weekly	mean $= 2.1$ e	tc.
			H ₁ : λ (or μ) \neq 42 Po(42) ~ N(42, 42) stated or implied	B1 B1√ [^]	allow 'population ft their '42' (Ac	on mean' not	just 'mean'
					N(2.1,2.1/20)	_	
			$\frac{53.5-42}{\sqrt{42}}$	M1			
			= 1.77(4) (or 0.038 for area comparison)	A1	allow with wron Accept alt meth with or without	od using N(2	2.1,2.1/20)
			comp 1.96	M1	Valid comp z or 0.025 seen	r 1 – ('1.77	4') with
			No evidence that mean has changed	A1 ∜ [6		ns. No ft for	$H_1: \lambda \text{ (or } \mu)$
					cv method)		

www.qyconsult.com

Ρ	Page 5	5	Mark Scheme				abus	Paper	
			Cambridge International A Level -	- May	/Jur	e 2016 97	709	72	
5	5 (i)		$\frac{T \sim N(520, 70)}{\frac{530 - 520}{\sqrt{70'}}} \ (= 1.195)$	B1 B1		for N(520,) or N(500 standardising with 51 for Var = 70 seen or i	vith 510		
			('1.195') = 0.884 (3 sf)	M1 M1 A1	[5]	ft their E and Var; alle finding correct area co working CWO			
	(ii)		E(T) = -10 Var(T) = 50 + 4.1 ² × 20 (= 386.2) $\frac{0 - (-10)}{\sqrt{386.2^{1}}}$ (= 0.509) 1 - ('0.509') = 0.305 (3 sf)	B1 B1 M1 M1	[5]	or +10 for T < 0 Seen or implied ft their E and Var; allo finding correct area co working CWO			
6	(i)		$\lambda = 6.8 e^{-6.8} \times \frac{6.8^5}{5!} = 0.135 (3 \text{ sf})$	B1 M1 A1	[3]	any λ			
	(ii)	(a)	$e^{-3.4}(1+3.4+\frac{3.4^2}{2}+\frac{3.4^3}{3!}+\frac{3.4^4}{4!})$	M1		any λ , allow one end-	error		
			= 0.744 (3 sf)	A1	[2]				
		(b)		M1 A1	[2]	or complete method, a end-error	any λ, a	llow one	
	(iii)		P(X ≤ 6) = '0.870' + $e^{-3.4} \times \frac{3.4^6}{6!}$ = 0.94	M1 A1		or complete method, a fully correct un-simpl better	•	pression or	
			Need 6 hair driers	A1	[3]	dep M1A1 with nume (0.94 or better)	erical ju	stification	
7	(a)		0.3 or 1 – 0.6 or 0.4 or 0.2 seen 0.8	M1 A1	[2]				
	(b)	(i)	0.8 $k \int_{0}^{1.5} (2.25 - x^{2}) dx = 1$ $k \Big[2.25x - \frac{x^{3}}{3} \Big]_{0}^{1.5} = 1$ $k \times [3.375 - 1.125] = 1 \text{ or } k \times \frac{9}{4} = 1 \text{ oe}$ $k = \frac{4}{9} \mathbf{AG}$	M1		attempt integ $f(x)$ and limits	l '= 1'. I	gnore	
			$ k \left[2.25x - \frac{x^3}{3} \right]^{1.3} = 1 $ $ k \times \left[3.375 - 1.125 \right] = 1 \text{ or } k \times \frac{9}{2} = 1 \text{ or }$	A1		correct integration and	d limits		
			$k = \frac{4}{9}\mathbf{A}\mathbf{G}$	A1	[3]	No errors seen			

www.qyconsult.com

Page 6	Mark Scheme				Syllabus	Paper
	Cambridge International A Level – May/June 2016					72
(ii)	$\frac{4}{9} \int_{0}^{1.5} (2.25x - x^{3}) dx$ = $\frac{4}{9} \left[2.25 \frac{x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{1.5}$ = 0.5625 or 0.563 Mean no. of hours = 56.25 or 56.3 56 hrs 15 mins	M1 A1 A1 A1√	[4]	attempt integ x ft condone missing correct integration missing k ft their 0.5625	g k	
(iii)	Max <i>x</i> is 1.5, less than 2.9 or $150 < 290$	B 1	[1]	Needs numerica	l justificatior	1
(iv)	any <i>a</i> such that $2.9 \le a \le 5$	B1	[1]			
	Total for paper		0			