

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041102*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	D	1
Question Number	Correct Answer	Mark
2	В	1
Question Number	Correct Answer	Mark
3	С	1
Question Number	Correct Answer	Mark
4	D	1
		1
Question Number	Correct Answer	Mark
5	D	1
Question Number	Correct Answer	Mark
6	D	1
	T -	[
Question Number	Correct Answer	Mark
7	С	1
	T -	[·]
Question Number	Correct Answer	Mark
8	D	1
		1
Question Number	Correct Answer	Mark
9	D	1
		1
Question Number	Correct Answer	Mark
10	В	1
		1
Question Number	Correct Answer	Mark
11	А	1
Question Number	Correct Answer	Mark
12	А	1

Question Number	Correct Answer	Mark
13	С	1
		•
Question Number	Correct Answer	Mark
14	A	1
Question Number	Correct Answer	Mark
15	В	1
Question Number	Correct Answer	Mark
16	С	1
Question Number	Correct Answer	Mark
17	С	1
Question Number	Correct Answer	Mark
18	С	1
Question Number	Correct Answer	Mark
19	Α	1
		,
Question Number	Correct Answer	Mark
20	Α	1
	U	· ·

TOTAL FOR SECTION A = 20 MARKS

Section B

Question	Acceptable Answers	Reject	Mark
Number			
21(a)(i)	Alkane(s)		1
	IGNORE		
	Any references to 'branched' /		
	'aliphatic' / 'hydrocarbons'		

	Acceptable Answers	Reject	Mark
Number			
21(a)(ii)	2,3-dimethyloctane		1
	IGNORE		
	Incorrect or missing punctuation		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	1st mark: (Isomers) A and C (1)		3
	If no isomers or isomers other than A & C have been chosen, then award one mark max providing both 2 nd and 3 rd marking points are evident.	'Different chemical formulae'	
	2nd mark: (They/A and C) have the same molecular formula / C ₁₀ H ₂₂ / same number of C and H (atoms) (1)		
	3rd mark: (They/A and C) have different structural formulae/displayed formulae / skeletal formulae / different structures/different arrangement of atoms IGNORE Any references to 'in space' / 'spatial' Any references to names Any references to general formulae (1)		

Question Number	Acceptable Answers		Reject	Mark
21(a)(iv)	C ₁₂ H ₂₄			2
	1st mark: C ₁₂	(1)		
	2nd mark: H ₂₄	(1)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	A		1
	OR		
	В		
	ALLOW lower case letters		
	IGNORE any names or formulae		

Question	Acceptable Answers	Reject	Mark
Number			
21(b)(ii)	С		1
	OR		
	D		
	ALLOW lower case letters		
	IGNORE any names or formulae		

Question Number	Acceptable Answers	Reject	Mark
21(c)	Any one of:		1
	(It improves engine performance by)		
	Promoting efficient combustion OR		
	Allowing smoother burning OR		
	Increasing octane number		
	OR Reduces knocking / prevents		
	knocking OR		
	Pre-ignition being less likely OR		
	Being (more) efficient (fuels) OR		
	Better burning / fuels easier to burn OR		
	Combusting more easily OR		
	Improving combustion / complete combustion		
	OR		
	Burns more cleanly OR		
	More miles per gallon IGNORE any references to energy density / boiling temperature /		
	volatility		

		1	
Question	Acceptable Answers	Reject	Mark
Number			
21(d)	[FIRST, check the answer on the		3
	answer line		
	IF answer = $48000 \text{ (kJ kg}^{-1})$ award		
	(3) marks]		
	1 st two marks		
	1000 (1) x 8086 (1)		
	OR		
	8086 (1) x 1000 (1)		
	NOTE: second mark in both cases dependent on first mark unless one minor transcription error in first mark e.g. use of 110 rather than 170		
	3 rd mark		
	= 47564.70588		
	= 47364.70366 = 48000 (1)		
	- 40000		
	Answer must be to 2 sf I gnore signs and / or incorrect units at any stage		
	40 coores (2)		
	48 scores (2)		
	47.56 scores (1)		
	1374.6 scores (0) even if rounded to 2SF		
	ZOF (Total for O		

(Total for Question 21 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	ΔH_2 ALLOW $\Delta H_2 = \dots$		1

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	ΔH_5	<u>∆<i>H</i>₅</u>	1
	ALLOW $\Delta H_5 = \dots$	2	

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	<u>Δ<i>H</i>₆</u>	ΔH_6	1
	OR ΔH_6 / 2 OR ΔH_6 ÷2 OR 0.5 ΔH_6		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iv)	ΔH_1	ΔH_7	1
	ALLOW $\Delta H_1 = \dots$		

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	(The energy change / enthalpy change that accompanies / energy released / enthalpy released) the formation of one mole of a(n ionic) compound	'Energy / enthalpy required' / 'used'	2
	(1)	'molecule' no 1st mark	
	ALLOW as alternative for compound: lattice /crystal / substance / solid / product	mark	
	from its gaseous ions (1)	'gaseous atoms' no 2 nd mark	
	NOTE 'one mole of gaseous ions' scores max (1) (ie 2nd mark only available)		
	IGNORE References to 'constituent elements' References to 'standard conditions'		
	ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:-		
	energy change / enthalpy change per mole (1)		
	$Sr^{2+}(g) + 2CI^{-}(g) \rightarrow SrCI_2(s)$ ALLOW Any correct 'generic' equation with state symbols included		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	[FIRST, check the answer on the answer line IF answer = -2153 (kJ mol ⁻¹) then award (2) marks, with or without working] 1st Mark: $\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7$ OR $\Delta H_7 = \Delta H_1 - [\Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6]$ OR $\Delta H_7 = -829 - [164 + 550 + 1064 + (122 \times 2) + (2 \times -349)]$ (1)		2
	2nd Mark:		
	$\Delta H_7 = -2153 \text{ (kJ mol}^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working +2153 (kJ mol ⁻¹) -2031 (kJ mol ⁻¹) -2502 (kJ mol ⁻¹) -2380 (kJ mol ⁻¹)		
	NO OTHER TEs are allowed on an incorrect expression involving ΔH_7		

Question Number	Acceptable Answers	Reject	Mark
22*(c)	(Lattice energy of MgF ₂ more exothermic than that of NaF because)		3
	1st mark: Mg ²⁺ is smaller (than Na ⁺) ALLOW "Magnesium / Mg is smaller (than sodium / Na)" (1)	No 1st mark if only mention Mg atom or atomic radius	
	2nd mark:		
	Mg ²⁺ higher charge / higher charge density (than Na ⁺)	"Mg ²⁺ higher nuclear	
	ALLOW Any reference to Mg ²⁺ and Na ⁺ in answer for the 2 nd mark, unless nuclear charge mentioned	charge"	
	(1)		
	3rd mark: (So electrostatic forces of) attraction between ions stronger in MgF ₂ (than in NaF)		
	ALLOW Stronger ionic bonds in MgF ₂ / stronger ionic bonding in MgF ₂ (1)		
	OR reverse arguments		

(Total for Question 22 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)	C_nH_{2n} ALLOW Letters other than n		1

ALLOW: (partially) displayed or skeletal formulae throughout

Q23(b)

IGNORE: additional incorrect non-organic products

Question	Acceptable Answers	Reject	Mark
Number			
23(b)(i)	CH ₃ CH ₃	C ₂ H ₆	1

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	C ₂ H ₄ Cl ₂	1

ONLY PENALISE ONCE ONLY in (b) (iii) & (b) (iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a C to H covalent bond has been drawn

Question	Acceptable Answers	Reject	Mark
Number			
23(b)(iii)	HOCH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	C ₂ H ₆ O ₂ /	1
		OHCH2CH2OH	

Question	Acceptable Answers	Reject	Mark
Number			
23(b)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	BrCH ₂ CH ₂ Br / C ₂ H ₅ OBr / C ₂ H ₄ Br ₂	1

PENALISE USE OF Br instead of CI once only in parts (c)(i) & (c)(ii)

PENALISE missing H atoms from displayed formulae once only in parts (c)(i) & (c)(ii)

Question Number	Acceptable Answers	Reject	Mark
23(c) (i)	H CI H H CC—C—C—H (Major product) (1) H H H H (Major product) (1) H H H H (Minor product) (1) Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1) PENALISE CH ₃ not fully displayed ONCE only So CH ₃ CH(CI)CH ₃ and CH ₃ CH ₂ CH ₂ CI scores (1)		2

Question	Acceptable Answers	Reject	Mark
Number	11.0		_
23(c)(ii)	H_3C H		3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	attack of chloride ion (1) 1st mark: Curly arrow from C=C to H (in H—CI) AND curly arrow from bond in H—CI to the CI (dipole not reqd) Curly arrows must start from the bonds NOT the atoms (1)	Full + and - charges on HCI Incorrect polarity on HCI	
	2nd mark: Structure of correct secondary carbocation (1)	Extra / spare bond dangling from the C+ carbon	
	3rd mark: Curly arrow from anywhere on the chloride ion (including the minus sign) towards the C+ on the carbocation (1) NOTE: The chloride ion must have a full negative	δ- on chloride ion instead	
	charge, but the lone pair of electrons on the CI need not be shown ALLOW: TE on major product given in (c)(i)	of CI	
	Skeletal formulae can be used Mark the three points independently		

	T		
Question Number	Acceptable Answers	Reject	Mark
	Ц		-
23(d)(i)	$nC_3H_6 \rightarrow \begin{array}{c} H \\ H \\ C \\ H \\ H \\ H \end{array}$		3
	TWO 'n' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation (1)		
	One correct repeating unit, with the methyl branch shown (1)		
	ALLOW		
	CH ₃ fully displayed or just as CH ₃		
	BOTH continuation bonds (with or without bracket shown) (1)		
	If C=C bond left in polymer on right- hand side, then max (1)		
	Mark the three points independently		

Question	Acceptable Answers	Reject	Mark
Number			
23(d)(ii)	Non-biodegradable		1
	IGNORE		
	References to toxicity of poly(propene) / flammability		
	IGNORE		
	Litter / pollution / waste of resources		
	/ costs		
	ALLOW		
	People are reluctant to recycle OR		
	Harmful to marine life / harmful to		
	wildlife		
	OR		
	References to 'landfill'		
	OR		
	References to 'incineration' producing toxic fumes/toxic gases / CO ₂ /		
	Greenhouse gases		
	OR		
	References to use of energy/fuel		
	used in transport (of waste)		
	OR		
	It takes a long time to degrade		
1			1

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	$3C(s) + 3H_2(g)$ $C_3H_6(g)$ $(+4\frac{1}{2}O_2)$ $C_3H_6(g)$ Both arrows in the correct direction AND $3CO_2(g)$ and $3H_2O(l)$ $3CO_2$ and $3H_2O$ in lowest box IGNORE state symbols, even if incorrect IGNORE extra O_2 molecules in box or		1
	alongside arrows		

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	1 st mark (-394 x 3) + (-286 x 3) OR		2
	$= -2040 \text{ (kJ mol}^{-1}) $ (1)		
	2nd mark: $\Delta H_f = -2040 - (-2058)$		
	= $(+)18 (kJ mol^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working -18 (kJ mol ⁻¹) (+)1378 (kJ mol ⁻¹) (+)806 (kJ mol ⁻¹) (+)590 (kJ mol ⁻¹) -4098 (kJ mol ⁻¹) IGNORE units even if incorrect		

(Total for Question 23 = 17 marks

Question Number	Acceptable Answers		Reject	Mark
24(a)	$F(g) \rightarrow F^{+}(g) + e^{(-)}$ OR $F(g) - e^{(-)} \rightarrow F^{+}(g)$ Species	(1)	Electron affinity equation (0) overall Equations with F ₂ (g) score (0) overall	2
	State symbols IGNORE Any state symbols on electrons	(1)	0 v 0 v a	
	2nd mark is dependent on the fir NOTE :	st		
	F(g) + $e^{(-)} \rightarrow F^{+}(g) + 2e^{(-)}$ Use of 'FI' max (1)			

Question	Acceptable Answers	Reject	Mark
24*(b)	1st mark: Number of protons increases / increasing nuclear charge / increasing effective nuclear charge IGNORE Just 'the atomic number increases' (1) 2nd mark: Same shielding / same number of (occupied) shells / electron removed from the same shell / atomic radius decreases (1) 3rd mark: Greater (electrostatic) attraction between nucleus / protons and (outermost) electron (1)	'Shielding increases' (0) for 2 nd mark	3

Question Number	Acceptable Answers	Reject	Mark
24(c)*(i)	For aluminium 1st mark: (Electron lost from) (3)p-subshell / (3)p-orbital ALLOW Correct electron configuration for Al: 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ or [Ne]3s ² 3p ¹ or drawn as electrons-in-	Mention of 2 p, no 1 st mark	2
	boxes (1)		
	NOTE First mark must refer to aluminium		
	2nd mark: at higher energy / further from the nucleus / (more) shielded (by 3s)		
	OR		
	Magnesium electron is at lower energy / closer to the nucleus / less shielded (1)		
	IGNORE References to stability of 3s ² or full sorbitals / full s sub-shell in Mg		

Question Number	Acceptable Answers	Reject	Mark
24(c)*(ii)	For sulfur 1st mark: (Electron lost from a) pair of electrons / an orbital with electrons (spin-) paired / a full (p) orbital		2
	ALLOW Mention of (3)p ⁴ OR Correct electron configuration for S:1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ or [Ne]3s ² 3p ⁴ or drawn as electrons-in-boxes (1)		
	2nd mark: (increase in) repulsion (allows e ⁻ to be removed more easily) (1)		
	If no correct reference to Sulfur, then allow one mark for P (atom) has half-filled p sub-shell / p ³ (arrangement) is stable.		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	(AI) (Si) (P) (S) high high low low Four correct (2) Three correct (1)		2

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	(Na) (Al) (Si) (P) (S) giant (giant) giant giant molecular molecular ALLOW 'giant molecular' for Si ALLOW 'simple molecular' for P and/or S Five correct (2) Four correct (1)		2

Question Number	Acceptable Answers	Reject	Mark
24(d)(iii)	(Na) (Al) (Si) (P) (S) high (high) high X low low All four must be correct		1
	IGNORE Any word written over X in the Si box		

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	(2.76) = 0.12(0) (mol) 23.0		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	Moles $H_2 = \frac{1}{2} \times M_2$ x mol Na (1)		2
	Volume $H_2 = 0.06(0) \times 24$ = 1.44 (dm ³) (1)		
	ALLOW ECF from moles of Na in (e)(i)		
	ALLOW		
	Both marks if answer given 1440 cm ³		
	Correct answer, no working scores (2) NOTE:		
	The following answers score (1) mark with or without working 2.88 (dm³) / 2880 cm³		
	5.76 (dm ³) / 5760 cm³		
	However, check as 2.88 could score 2 as a TE of 0.24 mol from (e)(i)		
	IGNORE SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
24(e)(iii)	1st mark: Moles NaOH = moles of Na (1) Can be implied by use of value from (e) (i) 2nd mark: (0.12) = 0.24(0) (mol dm ⁻³) 0.500 (1) ALLOW TE from moles of Na in (e) (i) Correct answer, no working scores (2) IGNORE SF except 1 SF NOTE: TE from first mark to second mark only if answer from (e) (i) has been used in some way e.g. answer to (e) (i) × 2 would not score mark 1, but could then be used to score mark 2 as a TE	No 2 nd mark if give wrong units, e.g "mol/dm ⁻³ " "dm ³ /mol"	2
	/T . I C	Ouestion 24 - 10 n	

(Total for Question 24 = 19 marks)

PMT

TOTAL FOR SECTION B = 60 MARKS

TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom