

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6686/01)

June 2009 6686 Statistics S4 Mark Scheme

Question Number	Scheme	Marks
Q1	H ₀ : $\mu = 5$; H ₁ : $\mu < 5$ both CR: $t_9(0.01) > 2.821$ $\overline{x} = 4.91$ $s^2 = \frac{1}{9} \left(241.2 - \frac{49.1^2}{10} \right) = 0.0132222$ $s = \text{awrt } 0.115$ $t = \frac{ 4.91 - 5 }{\sqrt{0.013222}} = \pm 2.475$ 2.47 - 2.48 Since 2.475 is not in the critical region there is insufficient evidence to reject H ₀ and conclude that the mean diameter of the bolts is not less than (not equal to) 5mm.	B1 B1 B1 M1 A1 M1 A1

Ques Numl		Scheme	Mar	ks
Q2	(a) (b)	The differences are normally distributed The data is collected in pairs or small sample size and variance unknown or samples not independent	B1 B1	(1) (1)
	(c)	$d: 2.5, 1.6, 1.6, -1.9, -0.6, 4.5$ at least 2 correct $(\Sigma d = 7.7, \Sigma d^2 = 35.59)$ $\overline{d} = \pm 1.2833, \text{ sd} = 2.2675.$ (Var = 5.141) H ₀ : $\mu_d = 0$, H ₁ : $\mu_d > 0$ (H ₁ : $\mu_d < 0$ if d - 2.5, -1.6, -1.6 etc) both depend on their d's $t = \frac{\pm 1.2833\sqrt{6}}{2.2675} = \pm 1.386$ formula and substitution, 1.38 – 1.39	M1 A1, A1 B1 M1, A1	
		Critical value $t_5(5\%) = 2.015$ (1 tail) Not significant. Insufficient evidence to support that the device reduces CO_2 emissions.	B1 A1 ft	(8)
	(d)	The idea that the device reduces $C0_2$ emissions has been rejected when in fact it does reduce emissions. OR Concluding that the device does not reduce emissions when in fact it does (if not in context can get B1 only)	B1 B1	(2) [12]
		(b) Allow because the same car has been used (c) awrt ± 1.28 , 2.27		

Question Number	Scheme	Mark	KS
3 (a)	Size is the probability of H_0 being rejected when it is in fact true. or $P(\text{reject } H_0/H_0 \text{ is true})$ oe	B1	(1)
(b)	The power of the test is the probability of rejecting H_0 when H_1 is true. or $P(\text{ rejecting }H_0/H_1\text{ is true}) / P(\text{ rejecting }H_0/H_0\text{ is false})$ oe	B1	(1)
(c)	$X \sim B(12,0.5)$ $P(X \le 2) = 0.0193$ $P(X \ge 10) = 0.0193$	B1 M1	
(d)(i)	$\therefore \text{ critical region is } \{X \le 2 \cup X \ge 10\}$	A1A1	(4)
(ii)	P(Type II error) = $P(3 \le X \le 9 \mid p = 0.4)$ = $P(X \le 9) - P(X \le 2)$ = $0.9972 - 0.0834$ = 0.9138	M1 M1dep	
(e)	Power = $1 - 0.9138$ = 0.0862	B1 ft	(4)
	Increase the sample size Increase the significance level/larger critical region	B1 B1	(2) [12]
Notes	(d) (i) first M1 for either correct area or follow through from their critical region 2nd M1 dependent on them having the first M1. for finding their area correctly A1 cao (ii) B1 follow through from their (i)		

Question Number	Scheme	Marks	
Q4 (a)	$H_0: \sigma_A^2 = \sigma_B^2, \ H_1: \sigma_A^2 \neq \sigma_B^2$	B1	
	critical values $F_{12,8} = 3.28$ and $\frac{1}{F_{8,12}} = 0.35$	B1	
	$\frac{s_B^2}{s_A^2} = 2.40 \left(\frac{s_A^2}{s_B^2} = 0.416\right)$	M1A1	
	Since 2.40 (0.416) is not in the critical region we accept H_0 and conclude there is no evidence that the two variances are different.	A1ft (5	5)
(b)			,
	$S_{p}^{2} = \frac{8 \times 1.02 + 12 \times 2.45}{20}$	M1	
	= 1.878	A1	
	$(27.94 - 25.54) \pm 2.086 \times \sqrt{1.878} \times \sqrt{\frac{1}{9} + \frac{1}{13}}$	B1M1 A1ft	
	(1.16, 3.64)	A1 A1 (7	7)
(c)	To calculate the confidence interval the variances need to be equal. In part (a) the test showed they are equal.	B1 B1	
		(2	<u>'</u>)
		[14	ļ]

Ques Numl		Scheme	Marks
Q5	(a)	95% confidence interval for μ is $560 \pm t_{14}(2.5\%) \sqrt{\frac{25.2}{15}} = 560 \pm 2.145 \sqrt{\frac{25.2}{15}} = (557.2, 562.8)$	B1 M1 A1 A1 (4)
	(b)	95% confidence interval for σ^2 is $5.629 < \frac{14 \times 25.2}{\sigma^2} < 26.119$ $\sigma^2 < 62.675 \ \sigma^2 > 13.507$ $13.507 < \sigma^2 < 62.675$ awrt 13.5, 62.7	B1, M1, B1 A1, A1 (5)
	(c)	Require P(X > 565) = P $\left(Z > \frac{565 - \mu}{\sigma}\right)$ to be as large as possible OR $\frac{565 - \mu}{\sigma}$ to be as small as possible; both imply highest σ and μ . $\frac{565 - 562.8}{\sqrt{62.675}} = 0.28$ $P(Z > 0.28) = 1 - 0.6103 = 0.3897$ awrt $0.39 - 0.40$	M1 M1A1 M1 A1 (5)
		(c) M1 for using their largest σ and μ M1 for using $\frac{x-\mu}{\sigma}$ M1 1 – their prob	[14]

Question Number	Scheme	Marks	
Q6 (a)	$E(\frac{2}{3}X_1 + \frac{1}{2}X_2 + \frac{5}{6}X_3) = \frac{2}{3} \times \frac{k}{2} + \frac{1}{2} \times \frac{k}{2} + \frac{5}{6} \times \frac{k}{2} = k$ $E(X_1 + X_2 + X_3) = k \implies \text{unbiased}$	M1 A1 B1	(3)
(b)	$E(aX_1 + bX_2) = a\frac{k}{2} + b\frac{k}{2} = k$ $a + b = 2$	M1 A1	
	$a+b=2$ $Var(aX_1 + bX_2) = a^2 \frac{k^2}{12} + b^2 \frac{k^2}{12}$	M1A1	
	$= a^2 \frac{k^2}{12} + (2-a)^2 \frac{k^2}{12}$	M1	
	$=(2a^2-4a+4)\frac{k^2}{12}$		
(c)	$Var(aX_1 + bX_2) = a^2 \frac{k}{12} + b^2 \frac{k}{12}$ $= a^2 \frac{k^2}{12} + (2-a)^2 \frac{k^2}{12}$ $= (2a^2 - 4a + 4) \frac{k^2}{12}$ $= (a^2 - 2a + 2) \frac{k^2}{6}$ (*) since answer given	A1 cso	(6)
	Min value when $(2a-2)\frac{k^2}{6} = 0$ $\frac{d}{da}(Var) = 0$, all correct, condone missing $\frac{k^2}{6}$	M1A1	
	$\Rightarrow 2a - 2 = 0$ $a = 1, b = 1.$	A1A1	
	$\frac{d^2(Var)}{da^2} = \frac{2k^2}{6} > 0 \text{since } k^2 > 0 \text{ therefore it is a minimum}$	M1	
	$\min \text{ variance} = (1-2+2)\frac{k^2}{6}$		
	$=\frac{k^2}{6}$	B1	
	Alternative	((6)
	$\frac{k^2}{6}(a-1)^2 - \frac{k^2}{6} + \frac{2k^2}{6}$	M1 A1	
	$\frac{k^{2}}{6}(a-1)^{2} + \frac{k^{2}}{6}$ Min when $\frac{k^{2}}{6}(a-1)^{2} = 0$	A1A1	
	a = 1 b = 1	B1	
	$\min \text{ var} = k^2/6$		