PMT

Mark Scheme 4725 June 2005 4725 Mark Scheme June 2005

1.	$6\Sigma r^2 + 2\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
	$6\Sigma r^2 = n(n+1)(2n+1)$	A1		Correct formula stated
	$2\Sigma r = n(n+1)$	A1		Correct formula stated
	$\Sigma 1 = n$	A1		Correct term seen
	$n(2n^2+4n+3)$	M1	6	Correct algebraic processes including factorisation and simplification
		A1	6	Obtain given answer correctly
2.	(i) $A^2 = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix}$	M1		Attempt to find A ² , 2 elements correct
	(411)	A1		All elements correct
	$4A = \begin{pmatrix} 4 & 8 \\ 4 & 12 \end{pmatrix}$	M1		Use correct matrix 4 A
	$\mathbf{A}^2 = 4\mathbf{A} - \mathbf{I}$	A1	4	Obtain given answer correctly
	(ii) $\mathbf{A}^{-1} = 4\mathbf{I} - \mathbf{A}$	M1	2	Multiply answer to (i) by A^{-1} or obtain A^{-1} or factorise $A^2 - 4A$
		A1	6	Obtain given answer correctly
3.	(i) 22 – 2i	B1B1	2	Correct real and imaginary parts
	(ii) $z^* = 2 - 3i$ 5 - 14i	B1 B1B1	3	Correct conjugate seen or implied Correct real and imaginary parts
	(iii) $\frac{4}{17} + \frac{1}{17}i$	M1 A1	2	Attempt to use w^* Obtain correct answer in any form
			7	

4725 Mark Scheme June 2005

4.	$x^2 - y^2 = 21$ and $xy = -10$	M1 A1A1 M1 M1		Attempt to equate real and imaginary parts of $(x + iy)^2$ and 21 –20i Obtain each result Eliminate to obtain a quadratic in x^2 or y^2 Solve to obtain $x = (\pm) 5$ or $y = (\pm) 2$
	$\pm(5-2i)$	A1	6	Obtain correct answers as complex numbers
			6	
5.	(i) $\frac{(r+1)^2 - r(r+2)}{(r+2)(r+1)}$	M1		Show correct process for subtracting fractions
	(r+1)(r+2) (ii) EITHER	A1	2	Obtain given answer correctly
	$\frac{2}{3} - \frac{1}{2} + \frac{3}{4} - \frac{2}{3} \dots \frac{n+1}{n+2} - \frac{n}{n+1}$	M1		Express terms as differences using (i)
	3 2 4 3 n+2 n+1	A1		At least first two and last term correct
	n+1-1	M1		Show or imply that pairs of terms cancel
	$\frac{1}{n+2}$	A1	4	Obtain correct answer in any form
	OR	M2		State that $\sum_{r=1}^{n} u_r = f(n+1) - f(1)$
		A1A1		Each term correct
	(iii) $\frac{1}{2}$	B1 ft	1	Obtain value from their sum to <i>n</i> terms
	2		7	
6.	(i) Circle Centre (0, 2) Radius 2 Straight line	B1 B1 B1 B1		Sketch(s) showing correct features, each mark independent
	Through origin with positive slope	B1	5	
	(ii) 0 or 0 +0i and 2 + 2i	B1ftB1f t	2	Obtain intersections as complex numbers
		·	7	
8.	(a) (i) $\alpha + \beta = 2$ $\alpha\beta = 4$	B1B1	2	Values stated
	(ii) EITHER $\alpha^2 + \beta^2 = -4$	M1 A1	2	Use $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ Obtain given answer correctly
	OR (iii)	M1 A1		Find numeric values of roots, square and add Obtain given answer correctly
	$x^2 + 4x + 16 = 0$	B1		State or use $\alpha^2 \beta^2 = 16$

4725 Mark Scheme June 2005

	(b) (i) $p = 2$	M1 A1 M1	3	Or use substitution $u = x^2$ Write down a quadratic equation of correct form or rearrange and square Obtain $x^2 + 4x + 16 = 0$ Use sum or product of roots to obtain $6p = 12$ Or $6p^3 = 48$
	(ii) a = 44	A1	2	Obtain $p = 2$
		M1		Attempt to find $\sum \alpha \beta$ numerically or in terms of p or substitute their 2, 4 or 6 in equation
		A1ft	2	Obtain 11p ²
			11	
9.	(i) $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1B1	2	Each column correct
	(ii) Shear, e.g. (0,1) transforms to (3,1)	B1B1	2	One example or sensible explanation
	(iii) $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$	M1 A1	2	Attempt to find DC (not CD) Obtain given answer
	(iv)	B1		Explicit check for $n = 1$ or $n = 2$
	$\mathbf{M}^{k} = \begin{pmatrix} 2^{k} 3(2^{k} - 1) \\ 0 & 1 \end{pmatrix} .$	M1		Induction hypothesis that result is true for M ^k Attempt to multiply MM ^k or vice versa
	$\binom{k+1}{2}\binom{2k+1}{2}$			
	$\left(\begin{array}{cc} 2 & 3(2^{k+1} - 1) \\ 0 & 1 \end{array}\right) .$	A1 A1		Element 3(2 ^{k+1} –1) derived correctly All other elements correct
		A1	6	Explicit statement of induction conclusion
			12	