

A-LEVEL Mathematics

Statistics 2B – MS2B Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

A-level Mathematics June 2014 MS2B

	Q1	Solution	Marks	Total	Comments
$\begin{vmatrix} s = 4.38 & \text{or} & s^2 = 19.2 \\ t_4 = 2.132 \\ \text{C.I.} = 380.8 \pm 2.132 \times (4.38)^{\circ} \text{ or} & \sqrt{(19.2)}/_5) \\ = (377, 385) \end{vmatrix} \xrightarrow{\text{B1}} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{M1} \\ \text{M1} \\ \text{AWRT 2.13} \\ \text{Use of their } 4.38/\sqrt{5} \text{ or } \sqrt{(19.2)} \\ \text{M1} \\ \text{M1} \\ \text{AWRT } \\ \text{AWRT} \\ \text{AWRT} \\ \textbf{AWRT} \\$	(a)	Sample mean = $1904 \div 5 = 380.8$	B1		CAO
C.I. = $380.8 \pm 2.132 \times 4.38'$ or $\sqrt{(19.2'/_5)}$ M1 = $(377, 385)$ M1 6 Use of their $4.38/\sqrt{5}$ or $\sqrt{(19.2')}$ Rest of formula (using t_4 or t_5 AWRT	s	$s = 4.38$ or $s^2 = 19.2$	B1		AWRT
$= (377, 385)$ $\overline{\sqrt{5}}$ $= (377, 385)$ $\overline{\sqrt{5}}$ $A1$ $A1$ $AWRT$ 6 6 6		$t_4 = 2.132$	B1		
$= (377, 385)$ $\sqrt{5}$ $= (377, 385)$ $\sqrt{5}$ $A1$ $A1$ $A1$ $AWRT$ 6		C.I. = $380.8 \pm 2.132 \times (4.38)^{\circ}$ or $\sqrt{(19.2)^{\circ}}$	M1		Use of their $4.38/\sqrt{5}$ or $\sqrt{(^{(19.2)}/_5)}$
6		$\sqrt{5}$	m1		Rest of formula (using t_4 or t_5 (2.015))
		= (377, 385)	A1		AWRT
(b) 3 B1 CAO				6	
	(b)	3	B1		CAO
				1	
7				7	

Q2		Solutio	n	Marks	Total	Comments
(a)	E S Male 57 44 Female 39 43 Total 96 87	27 19	Total 17 145 4 105 21 250	B2,1	2	B2 all correct, B1 one slip.
(b)	ExpectedEMale55.68Female40.32		W NI 26.68 12.18 19.32 8.82	M1		Expected attempted, at least 2 correct to 3 s.f.
	0.03129 0.827 0.04321 1.1420 Sum = 6.59 $v = (4 - 1)(2 - 1)$ Critical value = 6.000H ₀ :No associationH ₁ :Association beTest statistic in crThere is significantbetween country at	07 0.00 = 3 .251 a between co etween co itical regi	530 2.63405 country & gender untry & gender on, reject H _o ce of association	M1 A1 B1 B1 r B1 A1 E1		$(O - E)^2/E$ attempted, at least 1 correct to 3 s.f. AWFW 6.58 – 6.60 CAO AWRT 6.25 B2 for just 6.25 seen At least 1 correct – must be in context. Comparison of 6.59 with 6.251 Dep on 6.59 A1 and 6.251 B1 and on hypotheses B1 Conclusion in context Dep on previous A1 and B1
					8	
(c)	More females that Fewer females that About the right nu England and/or W	an expect umber of	ed from N.I.	B1	1	For any one of these
					11	

If they combine Wales and Northern Ireland

Q2			Solutio	n		Marks	Total	Comments
(b)	Expected Male Female	E 55.68 40.32	S 50.46 36.54	W + NI 38.86 28.14		M1		Expected attempted, at least 2 correct to 3 s.f.
	$ \begin{array}{r} \hline 0.0312 \\ 0.0432 \\ Sum = 3. \\ v = (3 - 1) \end{array} $.1 1.14 .66	207 0.	67986 93886		M1 A0 B1F		$(O - E)^2/E$ attempted, at least 1 correct to 3 s.f.
	Critical v					B1F		AWFW 4.60 to 4.61 B2F for just 4.60 or 4.61 seen
	H ₁ :Assoc Test stati	ciation b stic not no signif	etween c in critica ficant evi	ountry & l region, a dence of	v & gender gender accept H _o association	B1 A0 E0		At least 1 correct – must be in context
		5	U					A maximum of 5 out of 8

Q3	Solution	Marks	Total	Comments
(a)	$P(X \le 4) = 0.3$	M1		
	So P(Both ≤ 4) = 0.3 ² = 0.09	A1		CAO
			2	
(b)(i)	0.1 + 0.2 + a + 0.3 + b = 1 so $a + b = 0.4$	B1		
	$3 \times 0.1 + 4 \times 0.2 + 5a + 6 \times 0.3 + 7b = 5.1$	M1		Correct treatment of simultaneous
	5a + 7b = 2.2 and $5a + 5b = 2.0$			
	or substitution of $b = 0.4 - a$ or $a = 0.4 - b$			equations, starting with correctly
	leading to	m1		simplified $5a + 7b = 2.2$
	a = 0.3, b = 0.1	A1		CAO
			4	
(ii)	$E(X^{2}) = 0.1 \times 3^{2} + 0.2 \times 4^{2} + 0.3 \times 5^{2} + 0.3 \times 6^{2} + 0.1 \times 7^{2}$	M1		Not simply $E(X^2) = 27.3$
	(=27.3)			
	$Var(X) = E(X^2) - E(X)^2 = 27.3 - 5.1^2 = 1.29$	A1		AG
			2	
(iii)	Using $N = 2X - 5$	M1		Or by use of 1, 3, 5, 7, 9
	E(N) = 2E(X) - 5 = 5.2	A1		
	$Var(N) = 2^{2}Var(X) = 5.16 \text{ so } \sigma_{N} = 2.27$	A1		AWRT Or $2 \times \sqrt{1.29}$
			3	
			11	

Q4	Solution	Marks	Total	Comments
(a)(i)	Area of rectangle = 1 (or total probability)	M1		
	$= \frac{1}{k} \times (b-a) \rightarrow (b-a) = k$	A1		AG
			2	
(ii)	$E(X) = \frac{1}{2}(a+b)$ (or $a + \frac{1}{2}k$)	B1		
			1	
(iii)	$\mathbf{E}(X^2) = \int^{\mathbf{b}} \underline{x^2} \mathrm{d}x$	M1		k or (b-a)
	$\int_{a} k$			For integration. Ignore limits
	$= \left[\frac{1}{3k}x^3\right]_a^b$	m1		
	$E(X^{2}) = \int_{a}^{b} \frac{x^{2}}{k} dx$ = $\begin{bmatrix} 1/_{3k}x^{3} \end{bmatrix}_{a}^{b}$ = $(\underline{b^{3} - a^{3}}) = \frac{1}{3}(b^{2} + ab + a^{2})$	A1		Use of correct limits AG
	3(b-a)			
			3	
(iv)	$Var(X) = E(X^2) - [E(X)]^2$	M1		Applied to this case (their mean)
	$Var(X) = E(X^{2}) - [E(X)]^{2}$ = $\frac{4}{12}(b^{2} + ab + a^{2}) - \frac{3}{12}(a + b)^{2}$			
	$= \frac{1}{12}(b^2 - 2ab + a^2) = \frac{1}{12}(b - a)^2.$	A1		Either form or continued to $1/_{12}k^2$
			2	
(b)	$\frac{1}{12}(b-a)^2 = 3 \rightarrow (b-a) = 6$	M1		
	b = 10	A1		
	$E(X) = \frac{1}{2}(a+b) = 7$	A1		
			3	
			11	

Q5	Solution	Marks	Total	Comments
(a)	$\mu = 128 \div 40 = 3.2$ as required for λ	B1		
. ,	$s^2 = 3.2410$ (Condone $\sigma^2 = 3.16$)	B1		AWRT 3.24 or 3.16
	which is close to λ , as required for Poisson	E1		Clearly stated (for either s^2 or σ^2)
			3	
(b)(i)	$1 - P(X \le 5) = 1 - 0.8946$	M1		For attempt to subtract $P(X \le 5)$
	= 0.105(4)	A1		AWRT
			2	
(ii)	$P(X \le 7) - P(X \le 2)$	M1		Attempt to use these two
	0.9832 - 0.3799	B1		For either.
	= 0.603(3)	A1		AWFW 0.603 to 0.604
			3	
(iii)	$P(X=0) = 0.0408 \text{ or } e^{-3.2}$			
	or $P(X \ge 0) = 0.9592$	B1		For any of these seen to 3 d.p.
	$1 - 0.9592^2$ (or $0.0408^2 + 2 \times 0.0408 \times 0.9592$)	M1		
	= 0.0799	A1		AWFW 0.079 to 0.081
			3	
(c)	Using Po(8.2)	M1		Stated or use in formula or either of
				figures below seen
	$e^{-8.2} \times 8.2^9 \div 9! + e^{-8.2} \times 8.2^{10} \div 10!$	m1		Or Calc $P(\le 10) - P(\le 8)$
				= 0.79555 - 0.56465
	= 0.231	A1		AWRT
			3	
			14	

Q6	Solution	Marks	Total	Comments
(a)	$H_0: \mu = 20, H_1: \mu \neq 20$	B1		Both
	$\bar{x} = 22.625$	B1		CAO
	$s = 4.5650066$ (or $\sigma = 4.27$)	B1		AWFW 4.56 – 4.57 (or AWRT 4.27)
	test stat = $\frac{22.625 - 20}{(4.5650066 \div \sqrt{8})}$	M1		Or $\sqrt{7}$ if $\sigma = 4.27$ used
	= 1.626	A1		AWRT 1.63
	$t_7 = \pm 1.895$	B1		
	Test statistic not in critical region, accept H _o	A1		Comparison of test stat with t_7
	There is insufficient evidence that Gary does not take a mean time of 20 minutes for an annual service.	E1		In context. These last two marks dep on both A1s and hypotheses B1. E1 also dep on previous A1.
	Alternative: If the boundaries of the critical region are calculated, marks as above except $20 \pm 1.895 \times (4.5650066 \div \sqrt{8})$ M1 ((16.94), 23.06) A1 (AWRT)		8	
(b)	5% sig gives $z = 1.64$ to 1.65	B1		AWFW
	$20 + 1.6449 \times (4.6 \div \sqrt{100})$	M1		OE
	= 20 + 0.754 to 0.759	A1		AWFW
	So to not support suspicion need $\bar{x} \leq 20.75$	A1		
			4	
	SC 20.76 using this method scores B1, M1, A1, A0			
			12	

Q7	Solution	Marks	Total	Comments
(a)	$P(X < 1) = \int_{0}^{1} \frac{4x}{5} dx \qquad \text{or } \frac{1}{2} \times 1 \times \frac{4}{5}$	M1		Including limits
	$= [\frac{2}{5}x^{2}]_{0}^{1} = \frac{2}{5}$	A1	2	
(b)(i)	$\int^{x} \underline{1}(3t^{2}-20t+33) dt$	M1		Accept x integral
	$\int_{1}^{1} 20 = [\frac{1}{20}(t^{3} - 10t^{2} + 33t]]^{x}$			
	$= \left[\frac{1}{20}\left(t^{3} - 10t^{2} + 33t\right]_{1}^{x}$	A1		Correct integration with limits
	$= \frac{1}{20} \left(x^3 - 10x^2 + 33x \right) - \frac{1}{20} \left(1 - 10 + 33 \right)$	m1		Use of limits
	$F(x) = \frac{2}{5} + \frac{1}{20}(x^3 - 10x^2 + 33x) - \frac{24}{20}$ = $\frac{1}{20}(x^3 - 10x^2 + 33x - 16)$	A1		With ² / ₅ included
	$= \frac{1}{20}(x^{3} - 10x^{2} + 33x - 16)$			AG
			4	
(ii)	F(1.13) = 0.49819	B1		At least 3 s.f.
	F(1.14) = 0.50527	B1		At least 3 s.f.
	Median requires $F(x) = 0.5$			
	0.49819< 0.5 < 0.50527	F 1		Must clearly indicate that median $\Gamma(x) = 0.5$
	So 1.13 < median < 1.14	E1		requires $F(x) = 0.5$
	Alternative scheme for (b)(ii)			
	Alternative scheme for (b)(ii) If a calculator, or trial and improvement, has			
	been used to solve the cubic equation directly:			
	$\frac{1}{20}(x^3 - 10x^2 + 33x - 16) = 0.5$	M1		
	median = AWFW 1.132 to 1.133	A1		
	which lies between 1.13 and 1.14	E1		
		21	3	
			9	