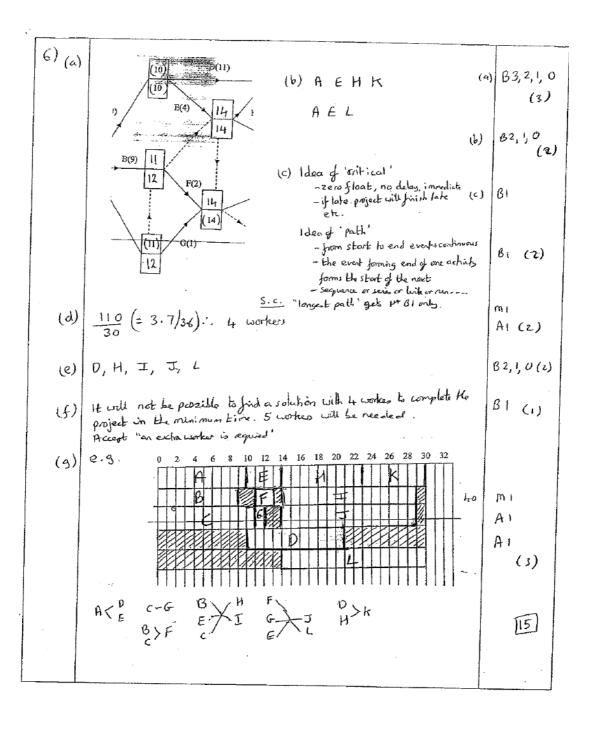


Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics


Decision Mathematics D1 (6689)

June 2007 6689 Decision Mathematics Mark Scheme

Question	Scheme	Marks
Number		Marks
1)	A graph is planar if it can be drawn in a plane in such a way that no two edges meet each other, except at a verter to which they are both incident	β2,1, 0 [2]
	must be equal.	(32,1,0 (2)
(b)	e.g. L-3=H-5=J-la=A-4 c.s. L=3-H=5-J=la-A=4	mi Al
	A=4 H=5 L=3 E=16 J=1a m=2	A1 (3)
(c)	Hand L can now both only do 3. So a complete making is not persible (other answer persible)	B2,1,0(2) ①
3) (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0 54 63 Y 27 126 N 126 26 N 13 252 N 378 12 N 6 504 Y 3 1008 N 1386 2 N	MI AI
	3402 0 Y	B1 (7)
(p)	The product scy.	82,1,0 (2)

[4) (a)	odd vertices B. D. F. H	
	BD+FH=21+20=41	miai
	BF + DH = 19 + 20 = 39 *	Αŀ
	BH + DF = 23 + 18 = 41	AI
	[Repeat BE, EF, DG and GH]	
	Shortest route = 125+39 = 164 km	A1/(5)
(i)	Seek to keep the least pairing - OF/18	BIA
	Therefore start/finish at B and H.	B1 (2)
		17.
5) (a)	MB, BE, MD, DC, CA	mi Ai Ai
(b)	m (170) P A	
(0)	(210) R	B1/(1)
	E (260) (110)	
	170 + 200 + 210 + 180 + 100 = 860	B1. (1)
(c)	(A cycle is formed when an arc is used that commects two vertices already	
(d)		B2,1,0
	frim's adjointhm always solects are that bring a vertex not in the bras into the tree, so sydes cont happen	(z
	(100) 100 J	<u></u>
	· .	
	·	

7) (a)	0-2x-4y-3z=0 (o.e.)	B2,0 (2)
(b)	12 x + 4y +5z £ 246	BI
	9x + 6y + 3z £ 153	81
Î	$9x + 6y + 3z \leq 153$ $5x + 2y - 2z \leq 171$	B ₁ (3)
(c)	basic variable x y z r s t Value	
	r 12 4 5 1 0 0 246	
	s 9 6 3 0 1 0 153	
. [P -2 -4 -3 0 0 0 0 0	
	P -2 -4 -3 0 0 0 0 0	
	b.v. x y z r s t Value Row operations	m: Al
	r 6 0 3 1 -2/3 0 144 R1-4R2	mial.
	y 3/2 1 1/2 0 1/6 0 25.5 R2:6	BIV
	F 4 0 -1 0 2/3 0 102 R3-2R2	
ĺ	P 4 0 -1 0 2/3 0 102 R4+4R2	
	b.v. x y z r s t Value Row operations	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mı Al
	16 18 0 1-3 N2-2K1	mi Al
	P 6 0 0 1 -1 1 264 R3 +3R1 P 6 0 0 73 479 0 150 R4 + R1	(9)
		1
(d) P	$=150 \cdot x = 0 y = 1.5 z = 48$	mi AiA
	f=0 S=0 E=264	A1/(3)
1e) (T	he third constraint) E = 0	BV (1)
		18
	•	

8)(4) 85			Bi
(b) C, = 140	, C2 = 104		BI, BI (3)
(c) e.g.	BDF 4 37 -4	,	mi Al
	BDF GT -1		
1 !	BDFCHIT-2		Ai
1	BDFCHJT-2		Al
1	BD & 6 7 - 10		(A)
			(5)
(d) max flow.	- min cut theorem, flow is 104, m	incut is Cz	mi Al (2)
			10
	•		
-			
			İ