1. Attempt to arrange in correct form $\frac{dy}{dx} + \frac{2}{x}y = \frac{\cos x}{x}$ M1

Integrating Factor:
$$= e^{\int \frac{2}{x} dx}, \left[(=e^{2\ln x} = e^{\ln x^2}) = x^2 \right]$$
 M1, A1
 $[x^2 \frac{dy}{dx} + 2xy = x \cos x \text{ implies M1M1A1}]$
 $\therefore x^2 y = \int x^2 \cdot \frac{\cos x}{x} dx \text{ or equiv.}$ M1ft
[IF. $y = \int I.F.$ (candidate's RHS)dx]

By Parts:
$$(x^2 y) = x \sin x - \int \sin x \, dx$$

i.e. $(x^2 y) = x \sin x, + \cos x (+ c)$
 $y = \frac{\sin x}{x} + \frac{\cos x}{x^2} + \frac{c}{x^2}$
A1, A1cao
A1ft8

First M: At least two terms divided by *x*.

"By parts" M: Must be complete method, e.g $\int x^{2} \cos x \, dx$ requires **two** applications

Because of functions involved, **be generous with sign**, but $x \sin x \pm \int \cos x \, dx$ is M0 (S.C. "Loop" integral like $\int e^x \cos x \, dx$, allow M1 if two applications of "by parts", despite incomplete method)

Final A ft for dividing all terms by candidates IF., providing "c" used.

[8]

(a)
$$[(x > -2)]$$
: Attempt to solve $x^2 - 1 = 3(1 - x)(x + 2)$ M1
 $[4x^2 + 3x - \frac{7}{4} = 0]$
 $x = 1, \text{ or } B1, A1$

[
$$(x < -2)$$
]: Attempt to solve $x^2 - 1 = -3(1 - x)(x + 2)$
Solving $x + 1 = 3x + 6$ ($2x^2 + 3x - 5 = 0$)
 $x = -\frac{5}{2}$ A16

"Squaring"

2.

If candidates do not notice the factor of $(x - 1)^2$ they have quartic to solve;

Squaring and finding quartic = $0 [8x^4 + 18x^3 - 25x^2 - 36x + 35 = 0]$	
Finding one factor and factorising $(x - 1)(8x^3 + 26x^2 + x - 35) = 0$	M1

Finding one other factor and reducing other factor to quadratic, likely to be $(x-1)^2(8x^2 + 34x + 35) = 0$

Complete factorisation
$$(x-1)^2(2x+5)(4x+7) = 0$$
 M1

[Second M1 implies the first, if candidate starts there or cancels $(x - 1)^2$]

$$x = 1$$
 B1, $x = -7/4$ A1, $x = -5/2$ A1

x = 1 allowed anywhere, no penalty in (b)

(b)
$$-\frac{7}{4} < x < 1$$
 One part M1
Both correct and enclosed A1

$$x < -\frac{5}{2}$$
 {Must be for $x < -2$ and only one value} B1ft3

Correct answers seen with no working is independent of (a) (graphical calculator) mark as scheme. Only allow the accuracy mark if no other interval, in both parts \leq used penalise first time used

[9]

M1

(a)
$$y = x^{-2} \Rightarrow \frac{dy}{dt} = -2x^{-3} \frac{dx}{dt} = -2x - 3t$$
 [Use of chain rule; need $\frac{dx}{dt}$] M1
 $\Rightarrow \frac{d^2 y}{dt^2} = -2x^{-3} \frac{d^2 x}{dt^2}, + 6x^{-4} \left(\frac{dx}{dt}\right)^2$ A1ft, M1A1

$$\frac{2}{x^3} \frac{d^2 x}{dt^2} - \frac{6}{x^4} \left(\frac{dx}{dt}\right)^2 = \frac{1}{x^2} - 3$$
(÷ given d.e. by x^4) $\frac{2}{x^3} \frac{d^2 x}{dt^2} - \frac{6}{x^4} \left(\frac{dx}{dt}\right)^2 = \frac{1}{x^2} - 3$
becomes $\left(-\frac{d^2 y}{dt^2} = y - 3\right)$ $\frac{d^2 y}{dt^2} + y = 3$
AG A1 cso5

Second M1 is for attempt at product rule. (be generous) Final A1 requires all working correct and sufficient "substitution" work

(b)Auxiliary equation:
$$m^2 + 1 = 0$$
 and produce
Complementary Function $y = \dots$ M1 $(y) = A \cos t + B \sin t$ A1caoParticular integral: $y = 3$ B1 \therefore General solution: $(y) = A \cos t + B \sin t + 3$ A1ft4

Answer can be stated; M1 is implied by correct C.F. stated (allow θ for *t*) A1 f.t. for candidates CF + PI Allow m² + m = 0 and m² - 1 = 0 for M1. Marks for (b) can be gained in (c)

(c)
$$\frac{1}{x^2} = A \cos t + B \sin t + 3$$

 $x = \frac{1}{2}, t = 0 \Longrightarrow (4 = A + 3) A = 1$ B1

Differentiating (to include $\frac{dx}{dt}$): $-2x^{-3}\frac{dx}{dt} = -A\sin t + B\cos t$ M1

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0, \ t = 0 \Longrightarrow (0 = 0 + B) \qquad B = 0 \qquad \text{M1}$$

$$\therefore \frac{1}{x^2} = 3 + \cos t \text{ so } x = \frac{1}{\sqrt{3 + \cos t}}$$
 A1 cao4

Second M : complete method to find other constant (This may involve solving two equations in A and B)

(d) (Max. value of x when
$$\cos t = -1$$
) so max $x = \frac{1}{\sqrt{2}}$ or AWRT 0.707 B11

[14]

(a)
$$\frac{x_{d\overline{x}} r \cos \theta = 4 \sin \theta \cos^3 \theta}{d\theta} = 4 \cos^2 \theta \sin^2 \theta$$
Any correct expression
M1A1

4.

Solving
$$\frac{dx}{d\theta} = 0$$
 $\left[\frac{dx}{d\theta} = 0 \Rightarrow 4\cos^2\theta(\cos^2\theta - 3\sin^2\theta) = 0\right]$ M1

$$\sin \theta = \frac{1}{2} \operatorname{or} \cos \theta = \frac{\sqrt{3}}{2} \operatorname{or} \tan \theta = \frac{1}{\sqrt{3}} \Longrightarrow \theta = \frac{\pi}{6}$$
 AG A1 cso

$$r = \frac{4\sin\frac{\pi}{6}\cos^2\frac{\pi}{6} = \frac{3}{2}}{AG}$$
 AG A1cso6

So many ways x may be expressing e.g. $2 \sin 2\theta \cos^2 \theta$, $\sin 2\theta (1 + \cos 2\theta)$, $\sin 2\theta + (1/2) \sin 4\theta$ leading to many results for $\frac{dx}{d\theta}$ Some relevant equations in solving $[(1 - 4 \sin^2 \theta) = 0, (4 \cos^2 \theta - 3) = 0, (1 - 3 \tan^2 \theta) = 0, \cos 3\theta = 0]$ Showing that $\theta = \frac{\pi}{6}$ satisfies $\frac{dx}{d\theta} = 0$, allow M1 A1 providing $\frac{dx}{d\theta}$ correct Starting with $x = r \sin \theta$ can gain MOM1M1

(b)
$$A = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} r^2 d\theta = \frac{1}{2} \cdot 16 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin^2 \theta \cos^4 \theta d\theta$$

$$8 \sin^2 \theta \cos^4 \theta = 2 \cos^2 \theta (4 \sin^2 \theta \cos^2 \theta) = 2 \cos^2 \theta \sin^2 2\theta$$

$$M1$$

$$= (\cos 2\theta + 1) \sin^2 2\theta$$

$$M1$$

$$= \cos 2\theta \sin^2 2\theta + \frac{1 - \cos 4\theta}{2} = \text{Answer}$$

$$AG$$

$$A1 \cos 3$$

First M1 for use of double angle formula for sin 2A Second M1 for use of $\cos 2A = 2 \cos^2 A - 1$ Answer given: must be intermediate step, as shown, and no incorrect work

(c) Area =
$$\left[\frac{1}{6}\sin^3 2\theta + \frac{\theta}{2} - \frac{\sin 4\theta}{8}\right]_{\left(\frac{\pi}{6}\right)}^{\left(\frac{\pi}{4}\right)}$$
 ignore limits M1A1
= $\left(\frac{1}{6}\sin^3\frac{\pi}{2} + \frac{\pi}{8} - \frac{\sin \pi}{8}\right) - \left(\frac{1}{6}\sin^3\frac{\pi}{3} + \frac{\pi}{12} - \frac{\sin\frac{2\pi}{3}}{8}\right)$ (sub. limits) M1

$$= \left(\frac{1}{6} + \frac{\pi}{8}\right) - \left(\frac{\sqrt{3}}{16} + \frac{\pi}{12} - \frac{\sqrt{3}}{16}\right) = \frac{1}{6}, \quad +\frac{\pi}{24}$$
 both cao A1, A15

For first M, of the form $a \sin^3 2\theta + \frac{\theta}{2} \pm b \sin 4\theta$ (Allow if two of correct form) On ePen the order of the As in answer is as written

[14]

5. $1\frac{1}{2}$ and 3 are 'critical values', e.g. used in solution, or both seen as asymptotes. B1 $(x + 1)(x - 3) = 2x - 3 \Rightarrow x(x - 4) = 0$ x = 4, x = 0 M1A1, A1

M1: Attempt to find at least one other critical value

$$0 < x < 1\frac{1}{2}, 3 < x < 4$$
 M1A1, A17

M1: An inequality using $1\frac{1}{2}$ or 3

First M mark can be implied by the two correct values, but otherwise a method must be seen. (The method may be graphical, but either (x =) 4 or (x =) 0 needs to be clearly written or used in this case). Ignore 'extra values' which might arise through 'squaring both sides' methods.

 \leq appearing: maximum one A mark penalty (final mark).

[7]

6. Integrating factor $e^{\int -\tan x dx} = e^{\ln(\cos x)}$ (or $e^{-\ln(\sec x)}$), $= \cos x \left(\operatorname{or} \frac{1}{\sec x} \right)$ M1, A1 $\left(\cos x \frac{dy}{dx} - y \sin x = 2 \sec^2 x \right)$ $y \cos x = \int 2 \sec^2 x dx$ (or equiv.) $\left(\operatorname{Or} : \frac{d}{dx} (y \cos x) = 2 \sec^2 x \right)$ M1A1(ft)

$$y \cos x = 2 \tan x (+C)$$
 (or equiv.) A1

$$y = 32 \arctan \overline{x} \ \Theta: 3C = 3$$

$$y = \cos x$$
 (Or equiv. in the form $y = f(x)$) A17

- 1st M: Also scored for $e^{\int \tan x dx} = e^{-\ln(\cos x)}$ (or $e^{\ln(\sec x)}$), then A0 for sec *x*.
- 2nd M: Attempt to use their integrating factor (requires one side of the equation 'correct' for their integrating factor).
- 2nd A: The follow-through is allowed <u>only</u> in the case where the integrating factor used is sec x or -sec x. $(y \sec x = \int 2 \sec^4 x dx)$
- 3^{rd} M: Using y = 3 at x = 0 to find a value for *C* (dependent on an integration attempt, however poor, on the RHS).

Alternative

- 1^{st} M: Multiply through the given equation by $\cos x$.
- 1st A: Achieving $\cos x \frac{dy}{dx} y \sin x = 2 \sec^2 x$. (Allowing the possibility of integrating by inspection).

7. C.F.
$$m^2 + 3m + 2 = 0$$
 $m = -1$ and $m = -2$ M1
 $y = Ae^{-x} + Be^{-2x}$ A12

$$P.I. \ y = cx^2 + dx + e$$
B1

$$\frac{dy}{dx} = 2cx + d, \frac{d^2y}{dx^2} = 2c \qquad 2c + 3(2cx + d) + 2(cx^2 + dx + e) \equiv 2x^2 + 6x \qquad M1$$

$$\begin{array}{ll} 2c = 2 & c = 1 & (\text{One correct value}) & \text{A1} \\ 6c + 2d = 6 & d = 0 & \\ 2c + 3d + 2e = 0 & e = -1 & (\text{Other two correct values}) & \text{A1} \\ \text{General soln: } y = Ae^{-x} + Be^{-2x} + x^2 - 1 & (\text{Their C.F. + their P.I.}) & \text{A1ft5} \end{array}$$

$x_{d\overline{y}} = 0, y = 1; 1 = A + B - 1$ $x_{d\overline{y}} = -Ae^{-x} - 2Be^{-2x} + 2r x$	$= 0 \frac{dy}{dt} = 1$	(A+B=2)	M1
dx = nc = 2bc + 2x, x	= 0, dx = 1	1 = -A - 2B	M1

Solving simultaneously: A = 5 and B = -3M1A1Solution: $y = 5e^{-x} - 3e^{-2x} + x^2 - 1$ A15

1st M: Attempt to solve auxiliary equation.

2nd M: Substitute their $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ into the D>E> to form an identity in x with unknown constants.

- 3^{rd} M:Using y = 1 at x = 0 in their general solution to find an equation in A and B.
- 4th M: Differentiating their general solution (condone 'slips', but the <u>powers</u> of each term must be correct) and using $\frac{dy}{dx} = 1$ at x = 0 to find an equation in A and B.
- 5^{th} M: Solving simultaneous equations to find both a value of A and a value of B.

[12]

8. (a)

Shape (close curve, approx. symmetrical about the initial line,	
in all 'quadrants' and 'centred' to the right of the pole/origin).	B1
Shape (at least one correct 'intercept' r value shown on sketch	
or perhaps seen in a table).	B12
(Also allow awrt 3.27 or awrt 6.73).	

(b)
$$y_{\text{dy}} r \sin \theta = 5 \sin \theta + \sqrt{3} \sin \theta \cos \theta$$
 M1
 $\frac{d\theta}{d\theta} = 5 \cos \theta - \sqrt{3} \sin^2 \theta + \sqrt{3} \cos^2 \theta (-5 \cos \theta + \sqrt{3} \cos 2\theta)$

$$\theta = 5\cos\theta - \sqrt{3}\sin^2\theta + \sqrt{3}\cos^2\theta (= 5\cos\theta + \sqrt{3}\cos2\theta)$$
 A1

$$5 \cos \theta - \sqrt{3}(1 - \cos^2 \theta) + \sqrt{3} \cos^2 \theta = 0$$

$$2\sqrt{3} \cos^2 \theta + 5 \cos \theta - \sqrt{3} = 0$$
M1

$$\frac{3}{3}\cos^2\theta + 5\cos\theta - \sqrt{3} = 0$$

$$\sqrt{3}\cos\theta - 1(\cos\theta + \sqrt{3}) = 0$$

$$\cos\theta = (0.288)$$

$$1$$

$$M1$$

$$(2\sqrt{3}\cos\theta - 1)(\cos\theta + \sqrt{3}) = 0 \qquad \cos\theta = (\dots (0.288...))$$

Also allow $\pm \arccos\frac{1}{2\sqrt{3}}$ M1
$$\theta = 1.28 \text{ and } 5.01 \text{ (awrt) (Allow } \pm 1.28 \text{ awrt)}$$

$$r = 5 + \sqrt{3} \left(\frac{1}{2\sqrt{3}} \right) = \frac{11}{2}$$
 (Allow awrt 5.50) A16

- 2^{nd} M: Forming a quadratic in cos θ .
- 3^{rd} M: Solving a 3 term quadratic to find a value of $\cos \theta$ (even if called θ).

<u>Speacial case</u>: Working with $r \cos \theta$ instead of $r \sin \theta$. 1st M1 for $r \cos \theta = 5 \cos \theta + \sqrt{3} \cos^2 \theta$ 1st A1 for derivative $-5 \sin \theta - 2\sqrt{3} \sin \theta \cos \theta$, then no further marks.

(c)
$$r^2 = 25 + 10\sqrt{3}\cos\theta + 3\cos^2\theta$$
 B1
 $\int 25 + 10\sqrt{3}\cos\theta + 3\cos^2\theta d\theta = \frac{53\theta}{2} + 10\sqrt{3}\sin\theta + 3\left(\frac{\sin 2\theta}{4}\right)$ M1 A1ft A1ft

(ft for integration of $(a + b \cos \theta)$ and $c \cos 2\theta$ respectively)

$$\frac{1}{2} \left[25\theta + 10\sqrt{3}\sin\theta + \frac{3\sin 2\theta}{4} + \frac{3\theta}{2} \right]_0^{2\pi} = \dots$$
 M1

$$=\frac{1}{2}(50\pi + 3\pi) = \frac{53\pi}{2}$$
 or equiv. in terms of π . A16

1st M: Attempt to integrate at least one term.

2nd M: Requires use of the $\frac{1}{2}$, correct limits (which could be 0 to 2π , or $-\pi$ to π , or 'double' 0 to π), and subtraction (which could be implied).

[14]

9. (a)
$$\frac{y_1 - 0.2}{0.1} \approx \left(\frac{dy}{dx}\right)_0 = 0.2 \times e^0 (= 0.2)$$
 M1
 $y_1 \approx 0.22$ A12

(b)
$$\left(\frac{dy}{y_2^4}\right) \approx 0.22 \times e^{0.01} \approx 0.2222...$$
 B1
 $\frac{y_2^2}{0.2} \approx 0.2222...$ M1
 $y_2 \approx 0.2444$ cao A13

[5]

10. (a)
$$(1-x^2)\frac{d^3y}{dx^3} - 2x\frac{d^2y}{dx^2} - x\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2\frac{dy}{dx} = 0$$
 M1
 $d^3y = dy$

At
$$x = 0$$
, $\frac{d^3 y}{dx^3} = -\frac{dy}{dx} = 1$ M1A1cso3

(b)
$$\left(\frac{d^2 y}{dx^2}\right)_0 = -4$$
 Allow anywhere B1
 $y = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f''(0)}{6}x^3 + ...$
 $= 2 - x - 2x^2, + \frac{1}{6}x^3 + ...$ M1A1ft, A1 (dep)4
[7]

11. (a)
$$z^n = (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

 $z^{-n} = (\cos\theta + i\sin\theta)^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$ both M1
Adding $z^n + \frac{1}{z^n} = 2\cos n\theta^*$ cso A12

(b)
$$\left(z+\frac{1}{z}\right)^6 = z^6 + 6z^4 + 15z^2 + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$$
 M1
= $z^6 + z^{-6} + 6(z^4 + z^{-4}) + 15(z^2 + z^{-2}) + 20$ M1

$$64\cos^{6} \theta = 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$$

$$32\cos^{6} \theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$$
A1, A1

$$(p = 1, q = 6, r = 15, s = 10)$$
 A1 any two correct 5

(c)
$$\int \cos^{6} \theta d\theta = \left(\frac{1}{32}\right) \int (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10) d\theta$$
$$= \left(\frac{1}{32}\right) \left[\frac{\sin 6\theta}{6} + \frac{32}{4} + \frac{15\sin 2\theta}{4} + \frac{15\sin 2\theta}{2} + 10\theta\right]$$
M1A1ft
$$\left[\dots \right]_{0}^{\frac{\pi}{3}} = \frac{1}{32} \left[-\frac{3}{2} \times \frac{\sqrt{3}}{2} + \frac{15}{2} \times \frac{\sqrt{3}}{2} + \frac{10\pi}{3}\right] = \frac{5\pi}{48} + \frac{3\sqrt{3}}{32}$$

$$\dots \int_{0}^{3} = \frac{1}{32} \left[-\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{3} \right] = \frac{1}{48} + \frac{1}{32}$$
 M1A14

or exact equivalent

[11]

12. (a) Let $z = \lambda + \lambda i$; $w = \frac{\lambda + (\lambda + 1)i}{\lambda(1+i)}$ M1

$$= \frac{\lambda + (\lambda + 1)i}{\lambda(1+i)} \times \frac{1-i}{1-i}$$
M1

$$u + iv = \frac{(2\lambda + 1) + i}{2\lambda}$$
A1

$$u = 1 + \frac{1}{2\lambda}, v = \frac{1}{2\lambda}$$
M1

Eliminating
$$\lambda$$
 gives a line with equation $v = u - 1$ or equivalent A15

(b) Let
$$z = \lambda - (\lambda + 1)i$$
: $w = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$ M1

$$=\frac{\lambda-\lambda i}{\lambda-(\lambda+1)i}\times\frac{\lambda+(\lambda+1)i}{\lambda+(\lambda+1)i}$$
M1

$$u + iv = \frac{\lambda(2\lambda + 1) + \lambda i}{2\lambda^2 + 2\lambda + 1}$$
A1

$$u = \frac{\lambda(2\lambda+1)}{2\lambda^2 + 2\lambda + 1}, v = \frac{\lambda}{2\lambda^2 + 2\lambda + 1}$$
 M1

$$\frac{u}{v} = 2\lambda + 1$$

$$v = \frac{2\lambda}{4\lambda^2 + 4\lambda + 2} = \frac{(2\lambda + 1) - 1}{(2\lambda + 1)^2 + 1} = \frac{\frac{u}{v} - 1}{\left(\frac{u}{v}\right)^2 + 1}$$
M1

 $\frac{4x^{2} + 4x + 2}{4x^{2} + 1} = \frac{(2x + 1)^{2} + 1}{(\frac{u}{v})^{2} + 1}$ Reducing to the circle with equation $u^{2} + v^{2} - u + v = 0$ * cso M1A17

Alternative 1

Let
$$z = \lambda - (\lambda + 1)i$$
: $w = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$ M1

$$=\frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i} \times \frac{\lambda + (\lambda + 1)i}{\lambda + (\lambda + 1)i}$$
M1

$$u + iv = \frac{\lambda(2\lambda + 1) + \lambda_1}{2\lambda^2 + 2\lambda + 1}$$
A1

$$u = \frac{\lambda(2\lambda+1)}{2\lambda^2 + 2\lambda + 1}, v = \frac{\lambda}{2\lambda^2 + 2\lambda + 1}$$
 M1

$$u^{2} + v^{2} - u + v = \left(\frac{\lambda(2\lambda+1)}{2\lambda^{2} + 2\lambda + 1}\right)^{2} + \left(\frac{\lambda}{2\lambda^{2} + 2\lambda + 1}\right)^{2} - \frac{\lambda(2\lambda+1)}{2\lambda^{2} + 2\lambda + 1} + \frac{\lambda}{2\lambda^{2} + 2\lambda + 1}$$
$$= \frac{(4\lambda^{4} + 4\lambda^{3} + \lambda^{2}) + \lambda^{2} - 2\lambda^{2}(2\lambda^{2} + 2\lambda + 1)}{(2\lambda^{2} + 2\lambda + 1)^{2}}$$
M1
= 0* M1A1

Alternative 2

Let
$$z = \lambda - (\lambda + 1)\mathbf{i}$$
: $u + \mathbf{i}v = \frac{\lambda - \lambda \mathbf{i}}{\lambda - (\lambda + 1)\mathbf{i}}$ M1

$$(u+iv)(\lambda - (\lambda + 1)i) = \lambda - \lambda i$$

$$M1$$

$$u\lambda + v(\lambda + 1) + [v\lambda - u(\lambda + 1)]i = \lambda - \lambda i$$

$$A1$$

$$u\lambda + v(\lambda + 1) + [v\lambda - u(\lambda + 1)]_1 = \lambda - \lambda 1$$
Equating real & imaginary parts
A1

$$u\lambda + v(\lambda + 1) = \lambda$$
 (i) $v\lambda - \lambda u - u = -\lambda$ (ii) M1

From (i)
$$\lambda = \frac{v}{1-u-v}$$
 From (ii) $\lambda = \frac{u}{1-u+v}$
$$\frac{v}{1-u-v} = \frac{u}{1-u+v}$$
 M1

Reducing to the circle with equation $u^2 + v^2 - u + v = 0$ * M1A1

[15]