Mark Scheme 4725 June 2007

Mark Scheme

1	EITHER	M1		Use trig to find an expression for <i>a</i> (or <i>b</i>)
	a = 2	A1		Obtain correct answer
		M1		Attempt to find other value
	$b=2\sqrt{3},$	A1		Obtain correct answer a.e.f.
	,	M1		(Allow 3.46)
	OR	M1		State 2 equations for <i>a</i> and <i>b</i>
		A1 A1	4	
				Attempt to solve these equations
	$a=2$ $b=2\sqrt{3}$			Obtain correct answers a.e.f.
			4	SR \pm scores A1 only
2	. 1	B1		Show result true for $n = 1$
_	$(1^3 =)\frac{1}{4} \times 1^2 \times 2^2$	21		
	4	M1		Add next term to given sum formula
	1^{2} 1^{2} 1^{3}	M1(indep)		Attempt to factorise and simplify
	$\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$	A1		Correct expression obtained convincingly
	4	A1	5	
	$\frac{1}{4}(n+1)^2(n+2)^2$			Specific statement of induction conclusion
	4			1
			5	
3	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	M1	3	Consider the sum of three separate terms
5	$3\Sigma r - 3\Sigma r + \Sigma 1$			consider the sum of three separate terms
				Correct formula stated
	$3\Sigma r^2 = \frac{1}{2}n(n+1)(2n+1)$	A1		
	$3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$			
	3			
	$3\Sigma r = \frac{3}{2}n(n+1)$	A1		Correct formula stated
	2			
		A1		Correct term seen
	$\sum_{n=1}^{\infty} 1 = n$	M1		Attempt to simplify
	n^3	A1	6	Obtain given answer correctly
			6	
4		B1	U	Transpose leading diagonal and negate other
1	(5 1)			diagonal or solve sim. eqns. to get 1 st column
	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1	2	Divide by the determinant or solve 2^{nd} pair to
	$(-3 \ 1)$		_	get 2 nd column
				-
	(ii)	M1		Attempt to use $B^{-1}A^{-1}$ or find B
	$\frac{1}{2}$ $\begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$			Attempt at matrix multiplication
		M1(indep)	4	One element correct, a.e.f,
	(23 - 5)		6	All elements correct, a.e.f.
		A1ft		NB ft consistent with their (i)
		A 164		
		Alft		

Mark Scheme

5	(i) $\frac{1}{r(r+1)}$ (ii)	B1 M1	1	Show correct process to obtain given result
	$1 - \frac{1}{n+1}$ (iii)	M1 A1 B1ft		Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter
	$S_{\infty} = 1$ $\underline{1}$	M1 A1 c.a.o.	3	State correct value of sum to infinity
	n + 1		3	Ft their (ii) Use sum to infinity – their (ii)
			7	Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$	B1 B1	2	State correct values
	(b)			
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)^{2}$ $= 9 - 4 = 5$	c) M1		State or imply the result and use their
	(ii) (a) $\frac{3}{u^3} - \frac{9}{u^2} + \frac{6}{u} + 2 = 0$	A1 ft	2	values
	(ii) (a) $u^{3} + u^{2} - 9u + 3 = 0$	M1	2	Obtain correct answer
	(b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	A1	-	Use given substitution to obtain an equation
		M1		Obtain correct answer
		A1ft	2	
			8	Required expression is related to new cubic stated or implied -(their "b" / their "a")

Mark Scheme

7	(\mathbf{i})	M1		Show compation process
/	(i)			Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a - 12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	det $\mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) <i>EITHER</i>	B1		
		21		
		M1		Obtain correct answer and state a
		111		
	OR	A 1	2	consistent conclusion
		A1	3	
		M1		det $M = 0$ so non-unique solutions
		A1		
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			0	•
0		DIDI	8	Deduce no solutions
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through $(1, 0)$ with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	
L		1	U	

PMT

更多咨询请登录

4725

Mark Scheme

9	$\begin{pmatrix} \sqrt{2} & 0 \end{pmatrix}$	B1	1	Correct matrix
	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$			
	(ii) Rotation (centre <i>O</i>), 45⁰, clockwise(iii)	B1B1B1	3	Sensible alternatives OK, must be a single transformation
		B1	1	Matrix multiplication or combination of transformations
	(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1 A1	2	For at least two correct images For correct diagram
	(v) det $\mathbf{C} = 2$	B1		State correct value
	area of square has been doubled	B1	2	State correct relation a.e.f.
			9	
10	(i) $x^2 - y^2 = 16$ and $xy = 15$	M1		Attempt to equate real and imaginary parts of $(x + iy)^2$ and 16+30i
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or y^2
	$\pm (5 + 3i)$	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
	(ii)	A1	6	Obtain correct answers as complex numbers
	$z = 1 \pm \sqrt{16} + 30i$	M1*		Use quadratic formula or complete the square
	6 + 3i, -4 - 3i	A1		-
		*Mldep	5	Simplify to this stage Use answers from (i)
		A1 A1ft		Obtain correct answers
			11	