

Mark Scheme (Results) January 2010

GCE

GCE Chemistry (6CH04/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2010
Publications Code UA022681
All the material in this publication is copyright
© Edexcel Ltd 2010

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question	Correct Answer	Reject	Mark
Number 1	В		1
_ 1	В		1
Question	Correct Answer	Reject	Mark
Number			
2	C		1
Ougstion	Correct Anguer	Doingt	AAnric
Question Number	Correct Answer	Reject	Mark
3	В		1
Question Number	Correct Answer	Reject	Mark
4	A		1
	·		<u> </u>
Question Number	Correct Answer	Reject	Mark
5	В		1
		-	<u> </u>
Question Number	Correct Answer	Reject	Mark
6	D		1
	1	-	l l
Question Number	Correct Answer	Reject	Mark
7	В		1
Question Number	Correct Answer	Reject	Mark
8	A		1
Question Number	Correct Answer	Reject	Mark
9	A		1
		F	
Question Number	Correct Answer	Reject	Mark
10	D		1
		- -	
Question Number	Correct Answer	Reject	Mark
11	Α		1
Question Number	Correct Answer	Reject	Mark
12	С		1

Question Number	Correct Answer	Reject	Mark
13	A		1
	•		
Question Number	Correct Answer	Reject	Mark
14	В		1
	·	•	
Question Number	Correct Answer	Reject	Mark
15	D		1
	•	<u> </u>	'
Question Number	Correct Answer	Reject	Mark
16	С		1
	•		
Question Number	Correct Answer	Reject	Mark
17	D		1
		<u> </u>	
Question Number	Correct Answer	Reject	Mark
18	С		1
		-	<u>'</u>
Question Number	Correct Answer	Reject	Mark
19	С		1
		•	
Question Number	Correct Answer	Reject	Mark
20	С		1

Section B

Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	$(pH =) -log [H^+]$ OR $(pH =) -log [H_3O^+]$ OR	Just "concentration of hydrogen ions" { } curly brackets -log H ⁺	1
	Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"		

Question	Acceptable Answers	Reject	Mark
Number			
21 (a)(ii)	$(pH = -log \ 0.0100) = 2(.00)$	If any units given	1

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	$[H3O+] = \frac{K_a[CH3COOH]}{[CH3COO-]}$ OR		4
	$[H_3O^+]^2 = K_a[CH_3COOH]$ (1)		
	ALLOW		
	[HA] for [CH ₃ COOH] and [A ⁻] for [CH ₃ COO ⁻] in rearranged expression		
	Accept [H ⁺] for [H ₃ O ⁺]		
	$\therefore [H_3O^+] = \sqrt{1.75 \times 10^{-7}}$ OR		
	$\therefore [H_3O^+] = 4.18(3) \times 10^{-4} \text{ (mol dm}^{-3})$ (1)		
	pH = 3.38 / 3.4 ignore sf except one sf	3.37 / 3 /3.39 / a correct pH value with	
	Third mark TE from [H ⁺] only if pH less than 7	units	
	N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3)		
	Assumption assumes that degree of ionisation of the acid is very small/negligible OR [CH ₃ COOH] _{eqm} =[CH ₃ COOH] _{initial}	just "weak acid" / just "partially dissociates" / acid does not dissociate /	
	OR [H ⁺] = [CH ₃ COO ⁻] OR	[CH ₃ COOH] constant	
	all of the hydrogen ions come from the acid / ignore hydrogen ions from the water (1)	[H ⁺] = [OH ⁻] / [H ⁺] = [salt]	
	IGNORE any references to temperature		

Question Number	Acceptable Answers	Reject	Mark
21 (b)(ii)	First mark:		2
	(Dilution/addition of water) shifts the equilibrium		
	CH_3COOH \Rightarrow $CH_3COO^- + H^+/$		
	$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$		
	to the right OR the above stated in words such as: degree of dissociation increases/ proportion of dissociation increases/ more dissociation (as the ethanoic acid is diluted) (1)		
	Second mark:		
	so the [H ⁺] is greater than expected/ so the decrease in [H ⁺] is less than expected / so that the decrease in [H ⁺] is less than that for hydrochloric acid (1)	Reject just a reference to a 0.5 increase in pH for CH ₃ COOH(aq)	
	Each mark is a stand alone mark.	compared with a 1.0 increase in pH for	
	ALTERNATIVE ROUTE:	HCl(aq)	
	First mark:		
	$[H^+] = \int K_a \times [HA] OR (K_a \times [HA])^{1/2}$		
	OR		
	pH = $\frac{1}{2}$ p K_a - $\frac{1}{2}$ log[HA] (1)		
	Second mark:		
	use of mathematical expression given (e.g.[H ⁺] affected by factor of 1//10 on dilution OR substitution of numerical values into the equation) (1)		
	IGNORE: any comments or calculations relating to HCl(aq)		

Question Number	Acceptable Answers		Reject	Mark
21 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists		"resists small change(s) in pH" OR	2
	change(s) in pH	(1)	"pH does not change"	
	for small addition of H ⁺ or OH ⁻ ions (N.B. both ions needed) / for small additions of acid or alkali / for small additions of acid or base			
	IGNORE any references to named buffer mixtures	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
21 (c)(ii)	citric acid		1

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iii)	First mark: (buffer contains) reservoir of HA and A ⁻ OR (buffer contains) large concentrations of [HA] and [A ⁻] OR both equations: HA ⇒ A ⁻ + H ⁺ and NaA → Na ⁺ + A ⁻ (1) Second mark: (Addition of alkali/base) HA + OH ⁻ → A ⁻ + H ₂ O OR description/equations to show that H ⁺ reacts with OH ⁻ (to form H ₂ O) and more acid dissociates (to replace H ⁺) (1) Third mark: (Addition of acid) A ⁻ + H ⁺ → HA OR A ⁻ reacting with H ⁺ in any context described in words (e.g. by reference to weak acid equilibrium) (1)	JUST NaA ⇒ Na ⁺ + A ⁻ and HA → H ⁺ + A ⁻ without correct description	4
	the ratio of [A-]+:[HA] hardly changes / the ratio of [HA]+ [A-] hardly changes OR [A-] nor [HA] changes significantly (1)	Just [H ⁺] remains constant	

Acceptable Answers	Reject	Mark
Each mark is a stand alone mark. First mark: hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal (1)	any reference to hydrogen bonding in ethanal just references to ethanol and ethanoic acid forming H bonds	3
	with water	
Second mark:		
hydrogen bonds are stronger than van der Waals'/ dipole-dipole/London/dispersion/induced dipole / permanent dipole /intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces (1)	references to breaking covalent bonds	
Third mark:		
ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having more oxygen atoms (1)	Just "ethanoic acid has more hydrogen bonds than ethanol"	
	Each mark is a stand alone mark. First mark: hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal Second mark: hydrogen bonds are stronger than van der Waals' / dipole-dipole/London/dispersion/ induced dipole / permanent dipole /intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces (1) Third mark: ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having	Each mark is a stand alone mark. First mark: hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal (1) Second mark: hydrogen bonds are stronger than van der Waals' / dipole-dipole/London/dispersion/induced dipole / permanent dipole //intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces (1) Third mark: ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having more oxygen atoms

Question Number	Acceptable Answers	Reject	Mark
22 (b)(i)	(Test): 2,4-dinitrophenylhydrazine /Brady's reagent/2,4-dnp/ 2,4-DNP/2,4-DNPH (1)	1,2-DNP etc/ hydrazine / /2,4-	2
	(Result):yellow precipitate /orange precipitate /red precipitate	dinitrophenolhydrazine /2,4- dinitrophenylhydrazone	
	ALLOW: 'solid' or 'crystals' in lieu of precipitate	a mar opnemy any arazone	
	(1)		
	Result mark for result CQ on correct reagent (or a near miss reagent (e.g. 2,4-DHPN))		

Question Number	Acceptable Answers		Reject		Mark
22 (b)(ii)	(Warm with) Fehling's (solution) / Benedict (solution)	's (1)	acidified potassium dichromate(VI) / manganate(VII)	(0)	2
	red precipitate/brown precipitate/brick-recipitate ALLOW "solid" ALLOW "red Cu ₂ O" ALLOW yellow/orange solid for Benedict's to	(1)	iodoform reaction just "red due to Cu" "red solid due to Cu		
	Penalise omission of "solid" once only in parts (b)(i) and (b)(ii) OR	(1)		(0)	
		(1)			
	(N.B. here, solid not required)				
	OR (Warm with) ammoniacal silver nitrate (solution)	(1)			
	silver (mirror)/ black / dark-grey (solid)	(1)			
	(N.B. here, solid not required)				
	2nd mark CQ on correct reagent or a near miss				
	Penalise omission of "solid" once only in (b)(i) and (b)(ii)				

Question Number	Acceptable Answers	Reject	Mark
22 (c)(i)	CH ₃ CH ₃ (6)	← _N	3
	(1) both arrows (1)	arrow from N in CN-	
	CH, OH, OH H CN + CN + CN + CN		
	IGNORE any dipoles shown		
	Check curly arrows are all double-headed in mechanism. (If all arrows are single-headed , can only score intermediate mark.)		
	Accept: arrow to an H ⁺ instead of an H-CN for third mark. [It is not necessary to show the lone pairs.]		
	IGNORE any equations which generate CN ⁻ ions		

Question Number	Acceptable Answers	Reject	Mark
22 (c)(ii)	With HCN alone, insufficient CN ⁻ OR KCN provides (sufficient) CN ⁻ OR KCN increases the concentration of CN ⁻ ALLOW "nucleophile" instead of CN ⁻ IGNORE any subsequent comments about the role of the CN ⁻ ion	Just "HCN is a weak acid" OR HCN "is too weak a nucleophile"	1

Question Number	Acceptable Answers	Reject	Mark
22 (c)(iii) QWC	These are stand alone marks		2
	First mark: attack from both sides OR attack from above and below (1)	attack on a (planar) carbocation OR attack on a (planar) intermediate OR S _N 1 OR S _N 2	
	Second mark: (gives) racemic mixture / (gives) equal amounts of each isomer / (gives) equal amounts of each enantiomer (1)	"planar product"	

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H ⁺] and [propanone] (virtually) constant OR so that the [H ⁺] and [propanone] do not affect the rate (1)		
	Second mark:		
	the [I ₂] / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained (1)		
	NOTE:-		
	"only the $[l_2]$ changes scores (2) OR		
	"only the l ₂ concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question Number	Acceptable Answers	Reject	Mark
23 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone (1) Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR		2
	slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by same factor" (1)		
	NOTE: may suggest a different procedure:-		
	First mark:		
	monitor/measure [propanone] over time (1) Second mark (mark consequentially):		
	plot [propanone] v. time graph and state that		
	$t_{1/2}$ constant (1)		

Question Number	Acceptable Answers	Reject	Mark
23 (a)(iii)	I ₂ not involved in rate-determining step/ I ₂ not involved in slow(est) step / H ⁺ and propanone involved in rate-determining step/ H ⁺ and propanone involved in slow(est)step (1)	I ₂ involved before rate- determining/slowest step (0)	2
	so there must be another step where I_2 is involved/ so there must be a fast step where I_2 is involved (1)		
	BUT:-		
	I_2 not involved until after the rate-determining step/ I_2 not involved until after the slow(est) step		
	(2)		
	ALLOW		
	H ⁺ involved in rate-determining step (1)		
	and is regenerated as it is a catalyst (in another step)		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
23 (b)(i)	$HCO_3^- + H^+ \rightarrow H_2O + CO_2$	NaHCO₃ + HCl →	1
	OR	NaCl + H ₂ O + CO ₂ OR	
	$HCO_3^- + H^+ \to H_2CO_3$	any equations with HA	
	OR		
	$HCO_3^- + H_3O^+ \rightarrow 2H_2O + CO_2$		
	OR		
	$HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$		
	ALLOW:		
	$NaHCO_3 + H^+ \rightarrow Na^+ + H_2O + CO_2$		
	OR		
	$Na^+ + HCO_3^- + H^+ \rightarrow Na^+ + H_2O + CO_2$		
	IGNORE any correct or any incorrect state symbols		

Question Number	Acceptable Answers		Reject	Mark
23 (b)(ii)	CH ₃ COCH ₃ + 3 I ₂ + 4 NaOH			3
	\rightarrow CHI ₃ + CH ₃ COONa + 3 NaI + 3 H ₂ O			
	IGNORE any correct or any incorrect state symbols			
	CHI ₃ on RHS of equation	(1)		
	remaining species correct balanced equation	(1) (1)		
	NOTE:			
	balancing mark is CQ on all species correct			
	Accept			
	correct ionic equation (i.e. Na ⁺ omitted)			
	NOTE: If CH₃I, can only access second mark above			

Question Number	Acceptable Answers	Reject	Mark
24 (a)	$K_{\rm p} = \frac{p({\rm H}_2)^3 p({\rm CO})}{p({\rm CH}_4)p({\rm H}_2{\rm O})}$ (1)	[]	1
	Brackets not required	$K_p = \frac{p(H_2)^3 + p(CO)}{p(CH_4) + p(H_2O)}$	

Question Number	Acceptable Answers	Reject	Mark
24 (b)(i)	No effect (as K_p dependent only on temperature)		1
	(1)		

Question Number	Acceptable Answers	Reject	Mark
24 (b)(ii)	(Since $K_p = \frac{x(H_2)^3 x(CO) \times P_T^4}{x(CH_4)x(H_2O)} \frac{P_T^4}{P_T^2}$ to maintain K_p constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_T^2$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase (1) Second mark: any mention of $\times P_T^2$ OR $\times P_T^4$		2
	(1)		
	ALLOW P for P_T		
	NOTE: If Le Chatelier quoted, statements such as:		
	"Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules" max (1)		

Question Number	Acceptable Answers	Reject	Mark
24 (b)(iii)	Reaction takes place on surface of the catalyst (1) Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction) NOTE: an answer such as " depends on the availability of active sites on catalyst surface" scores (2)		2

Question Number	Acceptab	le Answer	S			Reject	Mark
24 (c)		CO +	H ₂ O =	≐ CO ₂	+ H ₂		3
	initial	1	1	0	0		
	eq'm	0.25	0.25	0.75	0.75		
	mol frac	0.125	0.125	0.375	0.375		
	рр	3.75	3.75	11.25	11.25		
		ı'm moles ole fractio			(1)		
	1110	ole mactic	nis all coi	iect	(1)		
	• na	rtial pres	sures and	answer =	9 with no		
		nits	our es urre	4.157761	(1)		
	NOTE: 3rd	d mark no	t awarded	d if any ur	nits shown		
	NOTE: 11 3. =	.25 ² 75 ² 9		9	scores (3)		
	NOTE: Ma CHECK AI						

Question Number	Acceptable Answers	Reject	Mark
24 (d)(i)	production (of hydrogen) forms CO ₂ OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO ₂ is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	1

Question Number	Acceptable Answers	Reject	Mark
24 (d)(ii)	$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$		1
	ALLOW multiples		

Question Number	Acceptable Answers	Reject	Mark
24 (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy dangers of maintaining high pressures	1

Section C

Question Number	Acceptable Answers	Reject	Mark
25 (a)	ΔS° _{total} is positive / ΔS° _{total} > 0 with or without superscript NOTE: This mark may be awarded from answer to Q25(b)(v)	Just "the entropy is positive"	1
	Accept ΔG° is negative		

Question Number	Acceptable Answers	Reject	Mark
25 (b)(i)	(+)27.3 and (+)87.4 (J mol ⁻¹ K ⁻¹)		1
	IGNORE incorrect units		

Question Number	Acceptable Answers		Reject	Mark
25 (b)(ii)	$\Delta S^{o}_{sys} = (2x87.4) - \{(4x27.3 + (3x205.0))\}$	1)		2
	$= -549.4 / -549(J \text{ mol}^{-1} \text{ K}^{-1}) $ (1)		
	Correct answer with or without correct units	2)		
	IGNORE any wrong units	_,		
	Accept TE from (b)(i)			
	NOTE: +549/+549.4 scores (1)			
	Check working			
	NOTE: 1 st mark: for x2, x4 and x3 2 nd mark: for (products - reactants), with correct arithmetic			

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iii)	ΔS _{surr} = -ΔH T = - (-1648 x 10 ³) ÷ 298(.15) (J mol ⁻¹ K ⁻¹) = (+) 5530 (J mol ⁻¹ K ⁻¹) OR = (+) 5.53 kJ mol ⁻¹ K ⁻¹ (1) NOTES: • Correct answer, with or without working, scores (1) • If 5530 (J mol ⁻¹ K ⁻¹) given, IGNORE any subsequent incorrect attempts to convert it to a value in kJ mol ⁻¹ K ⁻¹ IGNORE s.f. except one s.f.	Just (+)5.53 with no units OR (+)5.53 kJ mol ⁻¹	1

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iv)	$\Delta S_{\text{total}} = (-549.4) + (+5530)$ = +4980.6/+ 4981 J mol ⁻¹ K ⁻¹	Just the formula:	2
	OR +4.981 kJ mol ⁻¹ K ⁻¹	$\Delta S_{total} = \Delta S_{sys}^{o} + \Delta S_{surr}$	
	(1) for value(1) for correct sign and units		
	IGNORE s.f. except one s.f.		
	Accept TE from (b)(ii) and (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
25 (b)(v)	$(\Delta S_{system}$ is negative):		3
	as loss of disorder as gas → solid		
	OR		
	more order as gas → solid		
	OR		
	as decrease in entropy as gas → solid		
	(1)		
	$(\Delta S_{surr}$ is positive):		
	(heat) energy released (increases kinetic energy and hence movement of the surrounding molecules)	Just "reaction is exothermic"	
	(1)		
	ΔS_{total} is positive because ΔS_{surr} is (numerically) greater than ΔS_{sys} OR ΔS_{surr} "outweighs" ΔS_{sys} OR ΔS_{surr} sufficiently large so that ΔS_{total} is positive (1)	ΔS_{total} is negative (0) for third scoring point	

Question Number	Acceptable Answers	Reject	Mark
26 (a)	(IR spectrum of X)		4
	peak at 3400 (cm ⁻¹) (1)	
	MAY BE ANNOTATED ON SPECTRUM		
	ALLOW anything in the Data Booklet range which is 3200 to 3750 (cm ⁻¹)	X is a phenol (0)	
	X has an O-H (group) OR X is an alcohol (1)	
	(From the chemical information)		
	X is primary or secondary (alcohol) OR X is not tertiary (alcohol) OR X is any two from:		
	butan-1-ol, butan-2-ol, (2)-methylpropan-1-ol (1)	
	Y is an aldehyde or a ketone ALLOW "Y is a carbonyl" (1)	
	NOTE RE THIRD/FOURTH SCORING POINTS:		
	If just state that X is butan-1-ol with no justification (0) but then go on to state Y is butanal, give (1) CQ mark		
	OR		
	If just state that X is butan-2-ol with no justification (0) but then go on to state Y is butanone, give (1) CQ mark		
	OR If just state that X is (2)-methylpropan-1-ol with no justification		
	but then go on to state Y is (2)-methylpropana give CQ mark (1)	l,	
	NOTE: These Part (a) marks may be awarded from answers to either Part (a) or Part (b)		

(1)

26 (b) QWC First two marks:

X is CH₃CH(OH)CH₂CH₃

Y is $CH_3COCH_2CH_3$ (1)

These marks are stand alone

NOTE: Two correct names, but no structural formulae for both scores (1) out of (2)

If X identified as CH₃CH₂CH₂CH₂OH and

and Y identified as CH₃CH₂CH₂CHO

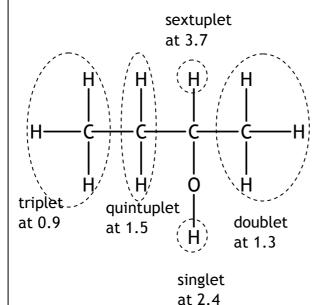
award (1) unless previously credited in (a)

(NMR spectrum of X)

Third mark:-

hydrogen OR H in five (different) environments

(IGNORE reference to butan-1-ol here)


OR

(so must be butan-1-ol or butan-2-ol and) **not** 2-methylpropan-1-ol which has four peaks/hydrogen environments

(1)

(1)

NOTE: Candidates may annotate a structural or displayed formula to show that there are five environments. (For this mark, no details of splitting or chemical shifts are needed.)

splitting pattern (2,6,1,5,3) consistent with **butan-2-ol** OR splitting pattern inconsistent with butan-1-ol

(which is 3,6,5,3,1)

6

Fourth mark:-

splitting pattern (2,6,1,5,3) consistent with **butan-2-ol**

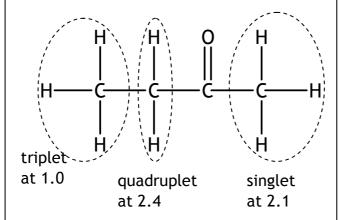
OR

splitting pattern inconsistent with butan-1-ol (which is 3,6,5,3,1)

OR

assign peaks correctly quoting chemical shifts from the spectrum

(1)


(NMR spectrum of Y)

environments

Fifth mark:hydrogen OR H in three (different)

(1)

NOTE: Candidates may annotate a structural or displayed formula to show that there are three environments. (For this mark, no details of splitting or chemical shifts are needed.)

Sixth mark:-

splitting pattern (1,4,3) is consistent with butanone

OR

splitting pattern is inconsistent with butanal (which is 3,6,4,3)

ÒR

splitting pattern inconsistent with 2-methylpropanal (which is 2,8,2)

OR

assign peaks correctly quoting chemical shifts from the spectrum

(1)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA022681 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH