4725

4725 Further Pure Mathematics 1

1 (i) $\begin{pmatrix} 1 & 1 \\ 5 & -1 \end{pmatrix}$	B1 Two elements correctB1 All four elements correct
	2
(ii) EITHER $1(2-1)$	B1 Both diagonals correct
$\frac{1}{3} \begin{pmatrix} 2 & 1 \\ -5 & 4 \end{pmatrix}$	B1 Divide by determinant
OR OR	2
	 B1 Solve sim. eqns. 1st column correct B1 2nd column correct
2 (i) 5 0.927 or 53.1°	 B1 Correct modulus B1 Correct argument, any equivalent form 2
(ii)(a) (b) A(3, 4)	 B1 Circle centre A (3, 4) B1 Through O, allow if centre is (4, 3) 2 B1 Half line with +ve slope B1 Starting at (3, 0) B1 Parallel to OA, (implied by correct arg shown)
$\frac{O}{3 \text{ (i)} \frac{r}{(r+1)!}}$	M1 Common denominator of $(r + 1)!$ or $r!(r + 1)!$
	2 Obtain given answer correctly
(ii) $1 - \frac{1}{(n+1)!}$	M1 Express terms as differences using (i)
	 A1 At least 1st two and last term correct M1 Show pairs cancelling A1 Correct answer a.e.f.
4	B1Establish result is true, for $n = 1$ (or 2 or 3)M1Attempt to multiply A and A^n , or vice versaM1Correct process for matrix multiplicationA1Obtain 3^{n+1} , 0 and 1A1Obtain $\frac{1}{2}(3^{n+1} - 1)$ A1Statement of Induction conclusion, only if 5 marks earned, but may be in body of working6

更多咨询请登录

47	725		Mark Scheme	June 2008
5			M1 M1	Express as difference of two series Use standard results
		$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
		4 0	M1	Attempt to factorise
			A1	At least factor of $n(n + 1)$
		$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
		12	6	
6	(i)	3 – i	B1	Conjugate stated
	(ii)	EITHER	<u>M1</u>	Use sum of roots
			A1	Obtain correct answer
			M1	Use sum of pairs of roots
			A1	Obtain correct answer
			M1	Use product of roots
		a = -8, b = 22, c = -20	Al	Obtain correct answers
		0.7	6	
		OR	M1	Attempt to find a quadratic factor
			Al	Obtain correct factor
			M1	Expand linear and quadratic factors
		a = -8, b = 22, c = -20 OR	AlA	1A1 Obtain correct answers
			M1	Substitute 1 imaginary & the real root into eqn
			M1	Equate real and imaginary parts
			M1	Attempt to solve 3 eqns.
		a = -8, b = 22, c = -20	A1A	1A1 Obtain correct answers
7	(i)		B1	Enlargement (centre O) scale factor 6
	(ii)		B1	Reflection
			B1	Mirror line is $y = x$
			2	
	(iii)			Stretch in <i>y</i> direction
	. ,		B1	Scale factor 6, must be a stretch
			2	
	(iv)			Rotation
	()		B1	36.9° clockwise or equivalent
			2	1

更多咨询请登录

4725

Mark Scheme

June 2008

8		$\alpha + \beta = -k$	B 1	State or use correct value
		$\alpha\beta = 2k$	B1	State or use correct value
			M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
		$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
		$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
		$\alpha'\beta'=1$	B1	Correct product of new roots seen
		$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
		2	7	
				Alternative for last 5 marks
			M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k and
				α or k and β
			A1	Obtain a correct expression
			A1	rearrange to get α in terms of u
			M1	Substitute into given equation
			A1	Obtain correct answer
9	(i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
		$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
			M1	Eliminate to obtain a quadratic in x^2 or y^2
		$\pm (3+2i)$	M1	Solve a 3 term quadratic & obtain x or y
			A1	Obtain correct answers as complex nos.
			5	Ĩ
	(ii)	5 – 12i	B1B1	Correct real and imaginary parts
	(iii)		<u></u>	Attempt to solve a quadratic equation
	. ,	$x^2 = 5 + 12i$	A1	Obtain correct answers
		x = +(3+2i)	A1A1	Each pair of correct answers a e f
		$n = \pm (2 \pm 21)$		Each pair of confect answers a.e.t.
			4	

4725		Mark Scheme	June 2008
10 (i)		M1 A1 2	Find value of det AB Correct value 2 seen
(ii)		M1 A1 B1	Show correct process for adjoint entries Obtain at least 4 correct entries in adjoint Divide by their determinant
	$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3a & a-6 \end{pmatrix}$	A1	Obtain completely correct answer
(iii)	EITHER	4 M1 A1 A1	State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1} = (\mathbf{AB})^{-1} \times \mathbf{A}$ Correct multiplication process seen Obtain three correct elements
	$\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	A1	All elements correct
	OR	5 M1 A1 M1 A1	Attempt to find elements of B All correct Correct process for B ⁻¹ 3 elements correct

A1

All elements correct

20