1

B1 Establish result true for n = 1 or n = 2M1 Add next term to given sum formula M1 Attempt to factorise or expand and simplify to correct expression Correct expression obtained **A**1 Specific statement of induction 5 **A**1 conclusion

5

2 **(i)** (-7) M1Obtain a single value A1 Obtain correct answer as a matrix

(ii) $BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$

$$\begin{pmatrix} -7 & -20 \end{pmatrix}$$

- M1 Obtain a 2×2 matrix
- **A**1 All elements correct
- B1 4C seen or implied by correct answer
- B1ft **4** Obtain correct answer, ft for a slip in BA

6

3 Either

$$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$$

$$\frac{1}{3}n(2n-1)(2n+1)$$

$$\frac{1}{3}n(2n-1)(2n+1)$$
Or
$$\sum_{r=1}^{2n} r^2 - 4\sum_{r=1}^{n} r^2$$

$$\tfrac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \tfrac{1}{6} n(n+1)(2n+1)$$

$$\frac{1}{3}n(2n-1)(2n+1)$$

- M1 Express as a sum of 3 terms
- Use standard sum results M1
- **A**1 Correct unsimplified answer
- M1Attempt to factorise
- **A**1 Obtain at least factor of n and a quadratic
- Obtain correct answer a.e.f. A1 6
- Express as difference of $2\sum_{r} r^2$ series M1
- Use standard result M1
- Correct unsimplified answer **A**1
- Attempt to factorise M1
- Obtain at least factor of n **A**1
- Obtain correct answer **A**1

6

4 (i) 5 + 12i 13 67.4° or 1.18

- B1B1 Correct real and imaginary parts B1ft Correct modulus
- B1ft 4 Correct argument

.-----

(ii)

- M1 Multiply by conjugate
 A1 Obtain correct numerator
- $\frac{11}{2} \frac{27}{1}$ A1 3 Obtain correct denominator

7

 $5 \qquad \textbf{(a)} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- B1B12 Each column correct
 SC B2 use correct matrix from MF1
 Can be trig form
- (b) (i) B1B12 Stretch, in x-direction sf 5 B1B12 Rotation, 60° clockwise

6

6 (i) (a)

- B1B12 Circle centre (3, -4), through origin
- (b) B1B12 Vertical line, clearly x = 3
- (ii) B1ft Inside their circle
 B1ft 2 And to right of their line, if vertical

7

Either $\alpha + \beta = -2k \alpha\beta = k$ $y^2 - 4ky + 4k = 0$	B1B1 M1 A1 M1 A1 B1ft 7	State or use correct results Attempt to find sum of new roots Obtain $4k$ Attempt to find product of new roots Obtain $4k$ Correct quadratic equation a.e.f.
Or $\alpha + \beta = -2k$ $\frac{-2k}{\alpha}$	B1 B1	State or use correct result State or imply form of new roots
$y = \frac{-2k}{x}$ $y^2 - 4ky + 4k = 0$	B1 M1 A1 M1 A1	State correct substitution Rearrange and substitute for <i>x</i> Correct unsimplified equation Attempt to clear fractions Correct quadratic equation a.e.f.
Or		
$-k \pm \sqrt{k^2 - k}$	B1	Find roots of original equation
$\frac{\alpha+\beta}{\alpha} = \frac{2k}{k+\sqrt{k^2-k}}, \frac{\alpha+\beta}{\beta} = \frac{2k}{k-\sqrt{k^2-k}}$	B1	Express both new roots in terms of k
$y^2 - 4ky + 4k = 0$	M1 A1 M1 A1 B1ft	Attempt to find sum of new roots Obtain $4k$ Attempt to find product of new roots Obtain $4k$ Correct quadratic equation a.e.f.

更多咨询请登录

群尧咨询 $\verb|www.qyconsult.com||$

725	Mar	k Scheme	June 2010
(i)		M1 A1 2	Attempt to rationalise denominator or cross multiply Obtain given answer correctly
(ii)	$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	M1 M1 A1 A1 M1 A1 6	Express terms as differences using (i) Attempt this for at least 1 st three terms 1 st three terms all correct Last two terms all correct Show pairs cancelling Obtain correct answer, in terms of <i>n</i>
(iii)		B1 1	Sensible statement for divergence
(i)	$\det \mathbf{A} = a^2 - a$	M1 M1 A1 3	Show correct expansion process for 3 x 3 Correct evaluation of any 2 x 2 Obtain correct answer
(ii)	(a) (b) (c)	M1 A1 M1 A1 B1 B1 6	Find a pair of inconsistent equations State inconsistent or no solutions Find a repeated equation State non unique solutions State that det A is non-zero or find correct solution State unique solution SC if detA incorrect, can score 2 marks for correct deduction of a unique solution, but only once
(i)	$x^2 - y^2 = 3 xy = 2$ $z = 2 + i$	M1 A1 M1 M1 A1 5	Attempt to equate real and imaginary parts Obtain both results Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x or y value Obtain correct answer as a complex no.
(ii)		B1 1	Obtain given answer correctly
(iii)	$w^3 = 2 \pm 11i$ $w = 2 - i$	M1 A1 M1 M1 A1 5	Attempt to solve quadratic equation Obtain correct answers Choose negative sign Relate required value to conjugate of (i) Obtain correct answer
	(ii) (iii) (ii)	(i) $\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$ (ii) $\det \mathbf{A} = a^2 - a$ (ii) (a) (b) (c) $x^2 - y^2 = 3 xy = 2$ $z = 2 + i$ (ii) $w^3 = 2 \pm 11i$	(i) M1 A1 2 (ii) M1 M1 A1 $\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$ M1 M1 A1 A1 A1 A1 A1 A1 A1 A1