

Mark Scheme (Results)

Summer 2015

GCE Chemistry (6CH05/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041085*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question	Correct Answer	Reject	Mark
Number			
1	C		1
Question	Correct Answer	Reject	Mark
Number		i i i i i i i i i i i i i i i i i i i	Mark
2	A		1
		1	T
Question Number	Correct Answer	Reject	Mark
3	С		1
	1 -		<u> </u>
Question	Correct Answer	Reject	Mark
Number 4	В		1
4	D		1
Question	Correct Answer	Reject	Mark
Number		.,	
5	С		1
	1	T=	1
Question Number	Correct Answer	Reject	Mark
6	В		1
		1	· I
Question	Correct Answer	Reject	Mark
Number 7	В		1
	<u> </u>		<u> </u>
Question	Correct Answer	Reject	Mark
Number			
8	D		1
Question	Correct Anguar	Doloot	Mark
Number	Correct Answer	Reject	IVIALK
9	С		1
Question Number	Correct Answer	Reject	Mark
10	D		1
Question	Correct Answer	Reject	Mark
Number 11	C		1
		1	1 '
Question	Correct Answer	Reject	Mark
Number	Δ		1
12	A		1

Question Number	Correct Answer	Reject	Mark
13	D		1
Question Number	Correct Answer	Reject	Mark
14	D		1
	•	•	
Question Number	Correct Answer	Reject	Mark
15	A		1
Question Number	Correct Answer	Reject	Mark
16	D		1
Question Number	Correct Answer	Reject	Mark
17	D		1
		-	•
Question Number	Correct Answer	Reject	Mark
18	A		1
Question Number	Correct Answer	Reject	Mark
19	В		1
Question Number	Correct Answer	Reject	Mark
20	В		1

Section B

Question Number	Acceptable Answers	Reject	Mark
21a(i)	Ni: $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^8 4s^2$ (1) Cu: $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^{10} 4s^1$ (1)		2
	ALLOW capital letters, subscripts for superscripts ALLOW 4s before 3d		
	Penalise omission of 3s ² 3p ⁶ once only if rest is correct		

Question Number	Acceptable Answers	Reject	Mark
21a*(ii)	First electron removed is from 4s (in both atoms) (1)		2
	Second electron in Cu (is harder to remove so it is) EITHER closer to nucleus/in inner shell OR less shielded (1) IGNORE Comments about second electron being in full shell/ in a 3d shell/in a 3d orbital Reference to 3d ¹⁰ stability		

Question	Acceptable Answers	Reject	Mark
Number			
21a(iii)	(attraction on (3d) electrons increases due to) number of protons increasing / nuclear charge increasing		1
	IGNORE The charge density of the 2 ⁺ ions increases Effective nuclear charge		

Question Number	Acceptable Answers	Reject	Mark
21b(i)	$2Cu^+(aq)$ → $Cu(s)$ + $Cu^{2+}(aq)$ IGNORE Eqm sign for →	Reverse equation Any equation involving electrons	1

Question	Acceptable Answers	Reject	Mark
Number			
21b(ii)	Both white		2
	ALLOW (both) Colourless (1)		
	COMMENT Ignore states eg solution/precipitate		
	As have 3d ¹⁰ / have a full 3d sub-shell / ALL 3d orbitals are full		
	(1)		
	IGNORE		
	Does not have partially filled d orbitals		
	They do not absorb light		
	No d-d transitions occur		

Question Number	Acceptable Answers	Reject	Mark
21c	(Zinc) does not form a (stable) ion with incompletely/partially filled d orbitals ALLOW	Element has full d shells.	1
	d sub-shell for d orbitals The only (stable) ion formed by zinc has full d sub-shell It does not form a (stable) oxidation state with incompletely/partially filled d orbitals		

Total for Question 21 = 9 marks

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	electrose South Pt electrosis Vit (aq) Vit (aq) Ord Vit (aq)		3
	Beaker with V electrode in solution containing V ²⁺ (aq) AND beaker containing V ²⁺ (aq) and V ³⁺ (aq) with Pt electrode		
	N.B. Both solution levels must be shown (1)		
	Labelled salt bridge AND connections to voltmeter ALLOW Suitable name or formula of salt for label	Salt bridge neither dipping into nor touching solution unless penalised in MP1	
	ALLOW Salts eg NaCl in salt bridge (1)	Salt bridge containing an alkali/acid	
	Ion concentrations = 1 mol dm ⁻³ ALLOW M for mol dm ⁻³ Concentrations given in one beaker only	1 mole of V ²⁺ and 1 mole of V ³⁺	
	(1)		
	Beaker positions may be reversed		
	Ignore references to temperature and pressure		

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	First mark 2V³+ + V → 3V²+ Balanced equation, either direction ALLOW Eqm sign for → IGNORE State symbol even if incorrect (1) Second mark Correct direction ALLOW If helpesing is incorrect or exincleded	e ⁻ included	2
	If balancing is incorrect or e ⁻ included in equation (1)		

Question Number	Acceptable Answers		Reject	Mark
22b(i)	$([VO^{2+}(aq) + 2H^{+}(aq)],$	+0.34		1
	$([VO^{2+}(aq) + 2H^{+}(aq)],$ $[V^{3+}(aq) + H_2O(I)] Pt)$			
	$([VO_2^+(aq) + 2H^+(aq)],$ $[VO^{2+}(aq) + H_2O(I)] Pt)$	+1.00		
	$[VO^{2+}(aq) + H_2O(I)] Pt)$			
	Sign and value needed			

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	A : (+)0.32 (V) (1)		6
	VO ²⁺ (may be shown as a product in an overall equation) (1)		
	EITHER Bubbles / effervescence (of colourless gas) OR Colour changes (from yellow) to blue		
	TE on negative E_{cell} for 'stays yellow'	Violet	
	ALLOW (from yellow) to green if justified by partial reduction (1)	Violet	
	B: -0.2(0) (V) (1) no change / stays blue (1) If B=+0.2 or other positive value allow colour change from blue to green or brown.	Stays violet	
	EITHER Consistent use of rule that reaction occurs when E_{cell} is positive OR		
	Consistent use of rule that no reaction occurs when E_{cell} negative ALLOW If implied but not stated specifically (1)		

Question Number	Acceptable Answers	Reject	Mark
22c(i)	$V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^-$ OR Ox number of V increases by 3, ox number of Mn decreases by 5	Reverse equation unless used to deduce final correct equation.	1
	ALLOW Balanced full equation $5V^{2+} + 3MnO_4^{-} + 4H^{+} \rightarrow$ $5VO_2^{+} + 3Mn^{2+} + 2H_2O$		

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	$(35.50 \times 0.0200/1000) = 7.1(0) \times 10^{-4} / 0.00071$		1

Question Number	Acceptable Answers	Reject	Mark
22(c)(iii)	In final answer 92.2 scores 3 marks 33.2 scores 2 marks (ratio inverted) 55.3 scores 2 marks (ratio 1:1)		3
	METHOD 1 Mol V ²⁺ reacting = 7.10x 10 ⁻⁴ x 5/3 = 1.18333 x 10⁻³ = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)	x 3/5 = 4.26x 10 ⁻⁴	
	Mass $NH_4VO_3 = (1.183 \times 10^{-3} \times 116.9)$ = 0.1382927 g TE from 4.26 x $10^{-3} = 0.497994$ (1)		
	% purity = (0.1382927x 100/ 0.150) = (92.19333) = 92.2% TE from 0.497994 = 33.2% (1)		
	METHOD 2		
	If 100% pure, moles of NH_4VO_3 =0.150/116.9=1.283 x 10 ⁻³ (1)		
	Mol V ²⁺ reacting = 7.10x 10^{-4} x 5/3 = 1.18333 x 10^{-3} = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)		
	% purity = =1.18333 x 10 ⁻³ x 100/1.283 x 10 ⁻³ = 92.2% (1)		
	ALLOW TE at each step provided that each number used is to at least 2sf		

Total for Question 22 = 17 marks

Question Number	Acceptable Answers	Reject	Mark
23(a)	All carbon to carbon bonds same length/ longer C-C and shorter C=C not present		1
	IGNORE Just "benzene has a delocalised ring" Benzene does not have C=C double bonds Any references to shape/ bond angles		

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$(3 \times -118) = -354 \text{ (kJ mol}^{-1})$		1

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	X (205-354) = -149 (kJ mol ⁻¹) Benzene	Diagram inverted scores 0	2
	Cyclohexane-		
	First mark Relative levels with names or formulae (1)		
	Second mark Value —149 (kJ mol ⁻¹) + arrow in correct direction ALLOW double-headed arrow (1)	+149	
	TE from value in (b)(ii) IGNORE 3H ₂ if shown / cyclohexene / other arrows/values		

Question	Acceptable Answers	Reject	Mark
Number			
23(b)*(iii)	The p/pi-/Π/6 electrons (of		2
	carbon) (1)		
	are delocalised in benzene (but not in		
	$ X\rangle$ (1)		

Question	Acceptable Answers	Reject	Mar
Number			k
23(c)	First mark: $FeBr_3 + Br_2 \rightarrow FeBr_4^- + Br^+$ OR $Br-Br + FeBr_3 \rightarrow Br^{\delta+} Br^{\delta-}FeBr_3$ (1) Ignore state symbols even if wrong		4
	Second, third and fourth marks: Either		
	Br*/Br ^{δ*} (Br ^{δ*} FeBr ₃) H Br (+ FeBr ₃)		
	+ H ⁺ /HBr (+ FeBr ₃)		
	Arrow from benzene ring electrons (from inside the hexagon) to \mathbf{Br}^+ / \mathbf{Br}^{δ^+} (\mathbf{Br}^{δ^-} FeBr ₃) (1)		
	Correctly drawn intermediate with delocalisation covering at least three carbon atoms, but not the carbon atom bonded to the bromine, with the positive charge shown inside the horseshoe	Gap in wrong place	
	The bonds to H and Br may be dotted (1)		
	Arrow from / close to C-H bond to inside the hexagon and H ⁺ / HBr as product (1)		
	OR		
	$\begin{cases} b^{r} \\ $	τ	
	Use of Kekulé structure for benzene and intermediate with arrow from C=C double bond to \mathbf{Br}^+ / $\mathbf{Br}^{\delta+}$ ($\mathbf{Br}^{\delta-}$ FeBr ₃) (1)		
	Correctly drawn intermediate with + charge on the C atom next to the C bonded to H and Br		

The bonds to H and Br may be dotted (1)	
Arrow from / close to C-H bond to bond beside + charged C and H ⁺ / HBr as product (1)	
Each marking point is independent	

Question Number	Acceptable Answers		Reject	Mark
23(d)(i)	Bromine goes colourless OR It/the mixture goes from brown colourless	to	Goes clear	2
	ALLOW Red-brown/ Orange/ yellow/ combinations of these colours		Red to colourless	
	Bromine is decolorised	(1)	Bromine is discoloured	
	White precipitate/solid forms / Steamy fumes	(1)	Effervescence	
	IGNORE Antiseptic smell Gets hot			

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	OH $+ 3Br_2$ $+ 3HBr$ Organic product with structure shown (1) Rest of equation correct ALLOW C_6H_5OH or Kekule for phenol (1) $C_6H_5OH + 3Br_2 \rightarrow C_6H_2Br_3OH + 3HBr$ Scores MP2 only Substitution of 1Br or 2Br in any position in balanced equation scores MP2 only.		2

Question Number	Acceptable Answers	Reject	Mark
*23(d)(iii)	Lone pair of electrons on oxygen (may be shown on a diagram) and EITHER overlaps with pi cloud OR Feeds into / donates into / interacts with benzene ring	OH group overlaps	2
	Activating benzene ring / increasing electron density of ring / making attack by electrophiles easier (1) COMMENT 'Lone pair of electrons on oxygen increases electron density of ring'	Just 'making it more reactive'.	
	scores (2) ALLOW benzene becomes a better nucleophile for MP2		

Total for Question 23 = 16 marks

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	Concentrated nitric acid AND concentrated sulfuric acid ALLOW 'concentrated nitric and sulfuric acids' Concentrated HNO ₃ and concentrated H ₂ SO ₄	Extra reagents	1

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	To prevent multiple substitutions/ to stop di- or trinitrobenzene forming ALLOW To stop further substitution (of NO ₂)/ further nitration IGNORE further reaction	Further addition of nitro groups	1

Question	Acceptable Answers	Reject	Mark
Number			
24(a)(iii)	Tin/ Sn AND concentrated HCI/concentrated hydrochloric acid	Dilute HCI	1
	ALLOW Iron/Fe or Zn/Zinc for tin Conc for concentrated		

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	C ₆ H ₅ NH ₃ ⁺ CI ⁻		1
	ALLOW C ₆ H ₅ NH ₃ CI		

Question	Acceptable Answers	Reject	Mark
Number			
24(b)(ii)	ALLOW C ₆ H ₅ for benzene Undisplayed CH ₃	Skeletal formula Structural formula	1

Question	Acceptable Answers		Reject	Mark
Number				
24(b)(iii)	D (transition metal) complex ion ALLOW Transition metal complex / copper complex IGNORE Formulae of ions	(1)		2
	F (azo) dye / azo compound / dia: compound ALLOW diazonium compound molecule for compound	zo (1)		

Question Number	Acceptable Answers	Reject	Mark
24b(iv)	Benzenediazonium chloride ALLOW Phenyldiazonium chloride	Benzadiazonium chloride Diazonium salt	1

Question Number	Acceptable Answers	Reject	Mark
24b(v)	HCI + NaNO ₂ OR Hydrochloric acid + Sodium nitrite / nitrate(III) OR alternative cation to Na ⁺ IGNORE HNO ₂ Concentration of HCI	HCI + HNO ₂	1

Question Number	Acceptable Answers	Reject	Mark
24b(vi)	H3C CH3		1
	ALLOW any substitution positions $C_6H_3(CH_3)_2NH_2$ H- $C_6H_2(CH_3)_2NH_2$ Kekule structure	C ₆ H ₂ (CH ₃) ₂ NH ₂	

Total for Question 24 = 10 marks

Question Number	Acceptable Answers	Reject	Mark
25(a)(i)	H +H ₃ N— C —COO—		1
	CH_2OH OR $HOCH_2CH(NH_3^+)CO_2^-$ ALLOW Charge on NH_3 shown on N atom		

Question Number	Acceptable Answers	Reject	Mark
*25(a)(ii)	EITHER At pH 5.68 both NH ₂ groups on lysine will be NH ₃ ⁺ / lysine has an overall positive charge while serine has no overall charge (1) So only lysine will move to negative terminal / in an electric field (1)		2
	OR Iysine has a greater positive charge (than serine) (1)		
	Lysine will move faster / further in an electric field (1)		
	ALLOW They have different charges so will move different distances/ at different speeds 1 mark max		
	IGNORE Answers based on molecular mass		

Question Number	Acceptable Answers	Reject	Mark
*25(b)	Ignore references to H bonds from amino and carboxyl groups and assume that "phenylalanine cannot form H bonds" refers to R group in the compound. Serine has an OH (alcoholic) group which can form H bonds with water (1) Benzene ring in phenylalanine is bulky /is large and non-polar / is hydrophobic / London forces between phenylalanine molecules are significant ALLOW van der Waals etc for London ALLOW If MP1 is not scored, 'phenylalanine cannot form H bonds with water' can score MP2 (1)	VdW / id-id	2

Question Number	Acceptable Answers	Reject	Mark
25(c)	Н, -Н, Н-		1
	ALLOW NH2CH2CO2H / NH2CH2COOH		

Question Number	Acceptable Answers	Reject	Mark
25(d)(i)	(Measure) the amount of / angle of / degree of /extent of rotation (of plane of polarization/ plane polarized light) IGNORE direction they rotate the light	Just "polarimetry"	1

Question Number	Acceptable Answers	Reject	Mark
25(d)(ii)	(Leu has 1 chiral C but) Ile has 2 chiral C / 2 asymmetric C atoms OR The R group in Ile contains a chiral C (Leu has 2 optical isomers but Ile has 4 optical isomers) ALLOW Ile has (1) more chiral C (than leu) Chiral centres shown on formulae	Leu has no chiral C	1

Question Number	Acceptable Answers	Reject	Mark
25(e)	0 OH (N-E) C-NH2 CH3		2
	CON circled with N as part of ring (1) Fully correct structure (1)	Just N-C circled	
	ALLOW -CH(CH ₃)NH ₂ shown skeletally		
	OR Dipeptide using NH ₂ from alanine and COOH from proline, with correct structure and CONH circled This scores max (1)		
	NH CH3		

Question Number	Acceptable Answers	Reject	Mark
25(f)(i)	CH ₃ CHO / CH ₂ CHOH ALLOW Displayed or semi-displayed formula C ₂ H ₄ O	CH ₃ COH (unless with correct structure)	1

Question Number	Acceptable Answers	Reject	Mark
25(f)(ii)	C ₁₈ H ₉ NO ₄		1

Question Number	Acceptable Answers	Reject	Mark
25(f) (iii)	Several methods are possible. Amount of O should have been calculated and final answer should be consistent with masses/mols in calculation. There should be evidence of working at each stage for 4 marks		4
	MP1 2.614 g CO₂ contain 0.7129 g C 0.2673 g H₂O contain 0.0297 g H		
	OR $2.614 \text{ g CO}_2 \text{ contain } 0.059409 \text{ mol CO}_2 \\ 0.2673 \text{ g H}_2\text{O contain } 0.01485 \text{ mol H}_2\text{O} $ (1)		
	MP2 Mass O in Q = $(1.00 - 0.7129 - 0.0297 - 0.04620)$ = 0.2112 g (1)		
	% mol/100g ratio C 71.29 5.94 18 H 2.97 2.97 9 N 4.62 0.33 1 O 21.12 1.32 4		
	MP3 Number of moles of each element OR Number of mol in 100g Allow TE for incorrect mol of H – see calculation below (1)		
	MP4 Ratio stated must follow from numbers in calculation (so empirical formula is consistent with the molecular formula of Q) (1)		
	OR Calculation following error in H scores max (3) If mass H is wrongly calculated as 0.01485 g, then mass O will be 0.22605 (TE for MP2) (1)		
	% mol/100g ratio C 71.29 5.94 18 H 1.48 1.48 4.5 N 4.62 0.33 1 O 22.60 1.41 4.27		

Number of moles of each element (TE for MP3) (1) Ratio stated and empirical formula said not to be consistent (TE for MP4) (1)	
---	--

Question Number	Acceptable Answers	Reject	Mark
25(f)(iv)	Mass of molecular ion in mass spectrum = 303 / any sensible fragment with mass eg 302 / 158 / 145 or smaller fragment (1)		2
	ALLOW Molecular ion based on formula in f(i)		
	Number of peaks in nmr = 2 / 3 ALLOW 5 (1)	4	

Total for Question 25 = 18 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom