edexcel 쁯

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01R)

Question Number	Scheme		Marks
	Foci ($\pm 5,0$), Directrices $x= \pm \frac{9}{5}$		
1.	$(\pm) a e=(\pm) 5$ and $(\pm) \frac{a}{e}=(\pm) \frac{9}{5}$	Correct equations (ignore \pm 's)	B1
	so $e=\frac{5}{a} \Rightarrow \frac{a^{2}}{5}=\frac{9}{5} \Rightarrow a^{2}=9$	M1: Solves using an appropriate method to find a^{2} or a	M1A1
	or $a=\frac{-}{e} \Rightarrow \frac{5}{e^{2}}=\frac{9}{5} \Rightarrow e=\frac{5}{3} \Rightarrow a=3$	A1: $a^{2}=9$ or $a=(\pm) 3$	
	$\begin{aligned} & b^{2}=a^{2} e^{2}-a^{2} \Rightarrow b^{2}=25-9 \text { so } \\ & b^{2}=16 \quad(\Rightarrow b=4) \\ & \text { or } b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow b^{2}=9\left(\frac{25}{9}-1\right) \\ & b^{2}=16 \quad(\Rightarrow b=4) \end{aligned}$	M1: Use of $b^{2}=a^{2}\left(e^{2}-1\right)$ to obtain a numerical value for b^{2} or b	M1 A1
		A1: : $b^{2}=16$ or $b=(\pm) 4$	
	So $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$	M1:Use of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with their a^{2} and b^{2}	M1 A1
		A1: Correct hyperbola in any form.	
			(7)

Question	Scheme		Mar
2.(a)	$l_{1}:(\mathbf{i}-\mathbf{j}+\mathbf{k})+\lambda(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$	$l_{2}:(3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k})+\lambda(-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k})$	
	$\mathbf{n}=\left\|\begin{array}{rrr} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{array}\right\|=-9 \mathbf{i}-12 \mathbf{j}+36 \mathbf{k}$	M1: Correct attempt at a vector product between $4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ and $-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k}$ (if the method is unclear then 2 components must be correct) allowing for the sign error in the y component.	M1A1
		A1: Any multiple of ($3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k}$)	
			(2)
(b) Way 1	$\mathrm{a}_{1}-\mathrm{a}_{2}= \pm(2 i+8 j+k)$	M1: Attempt to subtract position vectors A1: Correct vector $\pm(\mathbf{2 i}+\mathbf{8} \mathbf{j}+\mathbf{k})$ (Allow as coordinates)	M1 A1
	$\text { So } p=\frac{\left(\begin{array}{l} 2 \\ 8 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} -9 \\ -12 \\ 36 \end{array}\right)}{\sqrt{9^{2}+12^{2}+36^{2}}}$	Correct formula for the distance using their vectors: $\frac{ \pm \pm(2 \mathbf{i}+\mathbf{8} \mathbf{j}+\mathbf{k}) " \cdot " \mathbf{n "}}{\|" n "\|}$	M1
	$p=\frac{ \pm 78}{\sqrt{1521}}=\frac{ \pm 78}{39}=2$	M1: Correctly forms a scalar product in the numerator and Pythagoras in the denominator. (Dependent on the previous method mark)	dM1 A1
		A1: 2 (not-2)	
			(5)
(b) Way 2	$\begin{aligned} & (\mathbf{i}-\mathbf{j}+\mathbf{k}) \bullet(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})=-13\left(d_{1}\right) \\ & (3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k}) \bullet(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})=13\left(d_{2}\right) \end{aligned}$	M1: Attempt scalar product between their \mathbf{n} and either position vector A1: Both scalar products correct	M1A1
	$\frac{ \pm 13}{\sqrt{3^{2}+4^{2}+12^{2}}}(=1)$	Divides either of their scalar products by the magnitude of their normal vector. $\frac{d_{1} \text { or } d_{2}}{\|" \mathbf{n} "\|}$	M1
	$p=\frac{d_{1}}{\left\|\mathbf{n n}^{n}\right\|}-\frac{d_{2}}{\left\|\mathbf{n}^{n}\right\|} \text { or } 2 \times \frac{d_{1}}{\|" \mathbf{n} "\|}$	M1: Correct attempt to find the required distance i.e. subtracts their $\frac{d_{1}}{\|" \mathbf{n} "\|}$ and $\frac{d_{2}}{\|" \mathbf{n} "\|}$ or doubles their $\frac{d_{1}}{\|" \mathbf{n} "\|}$ if $\left\|d_{1}\right\|=\left\|d_{2}\right\|$. (Dependent on the previous method mark) $\text { A1: } 2 \text { (not -2) }$	dM1 A1
			(5)
			Total 7

Question Number	Scheme		Marks
4.	$\left(\begin{array}{rrr}2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)\left(\begin{array}{c}1+s+t \\ -1+s+2 t \\ 2\end{array}\right)$	M1: Writes Π_{1} as a single vector A1: Correct statement	M1A1
	$\left(\begin{array}{rrr}2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)\left(\begin{array}{c}1+s+t \\ -1+s+2 t \\ 2\end{array}-2 t\right)=$	$=\left(\begin{array}{l}2+2 s+2 t+6-6 t \\ -2+2 s+4 t-2+2 t \\ -1+s+2 t+4-4 t\end{array}\right)$	M1A1
	M1: Correct attempt to multiply A1: Correct vector in any form		
	$=\left(\begin{array}{l}8+2 s-4 t \\ -4+2 s+6 t \\ 3+s-2 t\end{array}\right)$	Correct simplified vector	B1
	$\mathbf{r}=\left(\begin{array}{r}8 \\ -4 \\ 3\end{array}\right)+s\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)+t\left(\begin{array}{r}-4 \\ 6 \\ -2\end{array}\right)$		
	$\mathbf{n}=\left\|\begin{array}{rrc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 & -2\end{array}\right\|=-10 \mathbf{i}+20 \mathbf{k}$	M1: Attempts cross product of their direction vectors	M1A1
		A1: Any multiple of $-10 \mathbf{i}+20 \mathbf{k}$	
	$\mathbf{(8 i} \mathbf{- 4} \mathbf{j}+\mathbf{3 k}) . \mathbf{(i}-\mathbf{2 k})=8-6$	Attempt scalar product of their normal vector with their position vector	M1
	r. $(\mathbf{i}-\mathbf{2 k})=2$	Correct equation (accept any correct equivalent $\text { e.g. } \mathbf{r}(-10 \mathbf{i}+20 \mathbf{k})=-20)$	A1
			(9)

Question Number	Scheme		Marks
5(a)	$I_{n}=\left[x^{n}(2 x-1)^{\frac{1}{2}}\right]_{1}^{5}-\int_{1}^{5} n x^{n-1}(2 x-1)^{\frac{1}{2}} \mathrm{~d} x$	M1: Parts in the correct direction including a valid attempt to integrate $(2 x-1)^{-\frac{1}{2}}$	M1 A1
		A1: Fully correct application - may be un-simplified. (Ignore limits)	
	$I_{n}=\underline{5^{n} \times 3-1}-\int_{1}^{5} n x^{n-1} \underline{(2 x-1)(2 x-1)^{-\frac{1}{2}} \mathrm{~d}}$ x	Obtains a correct (possibly un-simplified) expression using the limits 5 and 1 and writes $(2 x-1)^{\frac{1}{2}} \text { as }(2 x-1)(2 x-1)^{-\frac{1}{2}}$	B1
	$I_{n}=5^{n} \times 3-1-2 n I_{n}+n I_{n-1}$	Replaces $\int x^{n}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x \text { with } I_{n}$ and $\int x^{n-1}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x$ with I_{n-1}	dM1
	$(2 n+1) I_{n}=n I_{n-1}+3 \times 5^{n}-1 *$	Correct completion to printed answer with no errors seen	A1cso
			(5)
(b)	$I_{0}=\int_{1}^{5}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x=\left[(2 x-1)^{\frac{1}{2}}\right]_{1}^{5}=2$	$I_{0}=2$	B1
	$5 I_{2}=2 I_{1}+74$ and $3 I_{1}=I_{0}+14$	M1: Correctly applies the given reduction formula twice	M1 A1
		A1: Correct equations for I_{2} and I_{1} (may be implied)	
	So $I_{1}=\frac{16}{3}$ and $I_{2}=\ldots$ or $5 I_{2}=2 \frac{I_{0}+14}{3}+74$ and $I_{2}=\ldots$	Completes to obtains a numerical expression for I_{2}	dM1
	$I_{2}=\frac{254}{15}$		B1
			(5)
			Total 10

Question Number	Scheme		Marks
6. (a)	$\left(\begin{array}{lll}4 & 2 & 3 \\ 2 & b & 0 \\ a & 1 & 8\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{c}8 \\ \ldots \\ \ldots\end{array}\right),=\lambda\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right), \lambda=8$	M1: Multiplies the given matrix by the given eigenvector	M1, M1, A1
		M1: Equates the x value to λ	
		A1: $\lambda=8$	
			(3)
(b)	$\left(\begin{array}{c}8 \\ 2+2 b \\ a+2\end{array}\right)=" 8$ " $\left.\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ So $a=-2$ and $b=7$	M1: Their $2+2 b=2 \lambda$ or their $a+2=0$	M1 A1 A1
		A1: $b=7$ or $a=-2$	
		A1: $b=7$ and $a=-2$	
			(3)
(c)	$\begin{aligned} & \left\|\begin{array}{lcc} 4-\lambda & 2 & 3 \\ 2 & 7-\lambda & 0 \\ -2 & 1 & 8-\lambda \end{array}\right\|=0 \\ & \therefore(4-\lambda)(7-\lambda)(8-\lambda)-2 \times 2(8-\lambda)+3(2+2(7-\lambda))=0 \end{aligned}$		M1
	Correct attempt to establish the Characteristic Equation. $=0$ is required but may be implied by later work Allow this mark if the equation is in terms of $\mathbf{a}, \mathbf{b}, \mathbf{c}$		
	Attempts to factorise i.e. $(8-\lambda)\left(30-11 \lambda+\lambda^{2}\right)$ or $(6-\lambda)\left(40-13 \lambda+\lambda^{2}\right)$ or $(5-\lambda)\left(48-14 \lambda+\lambda^{2}\right)\left(\right.$ NB $\left.240-118 \lambda+19 \lambda^{2}-\lambda^{3}=0\right)$		M1 A1
	M1: Attempt to factorise their cubic - an attempt to identify a linear factor and processes to obtain a simplified quadratic factor A1: Correct factorisation into one linear and one quadratic factor		
	Eigenvalues are 5 and 6	M1: Solves their equation to obtain the other eigenvalues A1: 5 and 6	M1 A1
			(5)
			Total 8

Question Number	Scheme		Marks
7(a)	Put $6 \cosh x=9-2 \sinh x$		M1
	$6 \times \frac{1}{2}\left(e^{x}+e^{-x}\right)=9-2 \times \frac{1}{2}\left(e^{x}-e^{-x}\right)$	Replaces $\cosh x$ and $\sinh x$ by the correct exponential forms	M1
	$4 e^{x}+2 e^{-x}-9=0 \Rightarrow 4 e^{2 x}-9 e^{x}+2=0$	M1: Multiplies by e^{x}	M1 A1
		A1: Correct quadratic in e^{x} in any form with terms collected	
	So $e^{x}=\frac{1}{4}$ or 2 and $x=\ln 2$ or $\ln \frac{1}{4}$	M1: Solves their quadratic in e^{x}	M1 A1
		A1: Correct values of x (Any correct equivalent form)	
			(6)
(b)	Area is $\int(9-2 \sinh x-6 \cosh x) \mathrm{d} x$	$\begin{aligned} & \int(9-2 \sinh x-6 \cosh x) \mathrm{d} x \text { or } \\ & \int(6 \cosh x-(9-2 \sinh x)) \mathrm{d} x \end{aligned}$ or the equivalent in exponential form	M1
	$\pm(9 x-2 \cosh x-6 \sinh x)$ or	M1: Attempt to integrate	M1 A1
	$\pm\left(9 x-4 \mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)$	A1: Correct integration	
	$\pm\left([9 \ln 2-2 \cosh \ln 2-6 \sinh \ln 2]-\left[9 \ln \frac{1}{4}-2 \cosh \ln \frac{1}{4}-6 \sinh \ln \frac{1}{4}\right]\right)$		dM1
	Complete substitution of their limits from part (a). Depends on both previous M's		
	$= \pm\left(9 \ln \left(2 \div \frac{1}{4}\right)-\left(e^{\ln 2}+\mathrm{e}^{-\ln 2}\right)-3\left(\mathrm{e}^{\ln 2}-\mathrm{e}^{-\ln 2}\right)+\left(\mathrm{e}^{\ln \frac{1}{4}}+\mathrm{e}^{-\ln \frac{1}{4}}\right)+3\left(\mathrm{e}^{\ln \frac{1}{4}}-\mathrm{e}^{-\ln \frac{1}{4}}\right)\right)$		M1
	Combines logs correctly and uses cosh and sinh of ln correctly at least once		
	$\left(9 \ln 8-\frac{5}{2}-\frac{18}{4}+4.25-11.25\right)=9 \ln 8-14 \text { or } 27 \ln 2-14$ Any correct equivalent		A1cao
	Subtracting the wrong way round could score 5/6 max		
			(6)
			Total 12
	Note If they use $4 e^{2 x}-9 e^{x}+2$ in (b) to find the area - no marks		

