

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01R)

Question Number	Scheme		Marks
	Foci (±5, 0), Directi	rices $x = \pm \frac{9}{5}$	
1.	$(\pm)ae = (\pm)5 \text{ and } (\pm)\frac{a}{e} = (\pm)\frac{9}{5}$	Correct equations (ignore ±'s)	B1
	so $e = \frac{5}{a} \Rightarrow \frac{a^2}{5} = \frac{9}{5} \Rightarrow a^2 = 9$	M1: Solves using an appropriate method to find a^2 or a	M1A1
	or $a = \frac{5}{e} \Rightarrow \frac{5}{e^2} = \frac{5}{5} \Rightarrow e = \frac{5}{3} \Rightarrow a = 3$	A1: $a^2 = 9$ or $a = (\pm)3$	
	$b^{2} = a^{2}e^{2} - a^{2} \Rightarrow b^{2} = 25 - 9 \text{ so}$ $b^{2} = 16 (\Rightarrow b = 4)$ or $b^{2} = a^{2}(e^{2} - 1) \Rightarrow b^{2} = 9\left(\frac{25}{9} - 1\right)$	M1: Use of $b^2 = a^2 (e^2 - 1)$ to obtain a numerical value for b^2 or b	M1 A1
	$b^2 = 16 (\Rightarrow b = 4)$	A1: : $b^2 = 16$ or $b = (\pm)4$	
	So $\frac{x^2}{9} - \frac{y^2}{16} = 1$	M1:Use of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with their a^2 and b^2 A1: Correct hyperbola in any form.	M1 A1
			(7)

Question Number	Scheme		Marks
2.	l_1 : ($\mathbf{i} - \mathbf{j} + \mathbf{k}$) + $\lambda(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$	l_2 : $(3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) + \lambda(-4\mathbf{i} + 6\mathbf{j} + \mathbf{k})$	
(a)	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{vmatrix} = -9\mathbf{i} - 12\mathbf{j} + 36\mathbf{k}$	M1: Correct attempt at a vector product between $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ and $-4\mathbf{i} + 6\mathbf{j} + \mathbf{k}$ (if the method is unclear then 2 components must be correct) allowing for the sign error in the y component.	M1A1
		A1: Any multiple of $(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k})$	
			(2)
		M1: Attempt to subtract position vectors	N#1 A 1
(b) Way 1	$\mathbf{a}_1 - \mathbf{a}_2 = \pm (2\mathbf{I} + \delta \mathbf{J} + \mathbf{K})$	A1: Correct vector $\pm(2\mathbf{i} + 8\mathbf{j} + \mathbf{k})$ (Allow as coordinates)	MI AI
	So $p = \frac{\begin{pmatrix} 2\\8\\1 \end{pmatrix} \begin{pmatrix} -9\\-12\\36 \end{pmatrix}}{\sqrt{9^2 + 12^2 + 36^2}}$	Correct formula for the distance using their vectors: $\frac{"\pm (2i + 8j + k)" \cdot "n"}{ "n" }$	M1
	$p = \frac{\pm 78}{\sqrt{1521}} = \frac{\pm 78}{39} = 2$	M1: Correctly forms a scalar product in the numerator and Pythagoras in the denominator. (Dependent on the previous method mark)	dM1 A1
		A1: 2 (not -2)	
			(5)
(b)	$(\mathbf{i} - \mathbf{j} + \mathbf{k}) \bullet (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) = -13 (d_1)$	M1: Attempt scalar product between their n and either position vector	N#1 A 1
Way 2	$(3i + 7j + 2k) \bullet (3i + 4j - 12k) = 13 (d_2)$	A1: Both scalar products correct	MIAI
	$\frac{\pm 13}{\sqrt{3^2 + 4^2 + 12^2}} (=1)$	Divides either of their scalar products by the magnitude of their normal vector. $\frac{d_1 \text{ or } d_2}{ \mathbf{n} }$	M1
	$p = \frac{d_1}{\left \mathbf{n} \right ^2} - \frac{d_2}{\left \mathbf{n} \right ^2} \text{ or } 2 \times \frac{d_1}{\left \mathbf{n} \right ^2}$	M1: Correct attempt to find the required distance i.e. subtracts their $\frac{d_1}{ \mathbf{n} } \text{ and } \frac{d_2}{ \mathbf{n} } \text{ or doubles their } \frac{d_1}{ \mathbf{n} } \text{ if } d_1 = d_2 \text{ . (Dependent on the previous method mark)}$ A1: 2 (not -2)	dM1 A1
			(5)
			Total 7

Question Number	Schem	e		Mark	S
3. (a)	y p N $x = 8$	x	A closed curve approximately symmetrical about both axes. A vertical line to the right of the curve. A horizontal line from any point on the ellipse to the vertical line with both P and N clearly marked.	B1	(1)
3. (b)	M is $\left(\frac{x+8}{2}, y\right) = (X, Y)$	M1: Finds the	e mid-point of PN	MIAI	
	or $\left(\frac{6\cos\theta + 8}{2}, 3\sin\theta\right) = (X, Y)$	A1: Correct n	nid-point	WIAI	
	$\frac{(2X-8)^2}{(2X-8)^2} + \frac{Y^2}{(2X-8)^2} = 1$	M1: Attempt	cartesian equation	M1 A1	
	36 9	A1: Correct e	quation		
		• • • • •	4°		(4)
	The next 3 marks are dependent on having the equation of a circle.				
(c)	Circle because equation may be written $(x-4)^2 + y^2 = 3^2$	follow throug have a circle! their centre ar	h provided they do Can be implied by d radius.	B1ft	
	The centre is (4, 0) and the radius is 3	M1: Use their find centre an	circle equation to d radius	M1A1	
		A1: Correct c	entre and radius		
					(3)
	Createl C			Total	8
	In (b) they assume the locus is a circle at as (1, 0) and (7, 0) and hence deduce This approach scores no marks in	<u>ase:</u> nd find the inter e the centre (4, ((b) but allow re	rcepts on the <i>x</i> -axis) and radius 3. ecovery in (c).		

Question Number	Schem	e	Marks
4.	$ \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} $	M1: Writes Π_1 as a single vector A1: Correct statement	M1A1
	$\begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} =$	$= \begin{pmatrix} 2+2s+2t+6-6t \\ -2+2s+4t-2+2t \\ -1+s+2t+4-4t \end{pmatrix}$	M1A1
	M1: Correct attempt to multiply A	1: Correct vector in any form	
	$= \begin{pmatrix} 8+2s-4t \\ -4+2s+6t \\ 3+s-2t \end{pmatrix}$	Correct simplified vector	B1
	$\mathbf{r} = \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix} + t \begin{pmatrix} -4\\ 6\\ -2 \end{pmatrix} $	
	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 - 2 \end{vmatrix} = -10\mathbf{i} + 20\mathbf{k}$	M1: Attempts cross product of their direction vectorsA1: Any multiple of -10i +20k	M1A1
	(8i - 4j + 3k).(i - 2k) = 8 - 6	Attempt scalar product of their normal vector with their position vector	M1
	r. (i - 2k) = 2	Correct equation (accept any correct equivalent e.g. $\mathbf{r} \cdot (-10\mathbf{i} + 20\mathbf{k}) = -20$)	A1
			(9)

Question Number	Scheme		Marks
5(a)	$I_n = \left[x^n (2x-1)^{\frac{1}{2}} \right]_1^5 - \int_1^5 n x^{n-1} (2x-1)^{\frac{1}{2}} dx$	M1: Parts in the correct direction including a valid attempt to integrate $(2x-1)^{-\frac{1}{2}}$ A1: Fully correct application – may be un-simplified. (Ignore limits)	M1 A1
	$I_n = \underline{5^n \times 3 - 1} - \int_1^5 nx^{n-1} (2x-1)(2x-1)^{-\frac{1}{2}} dx$	Obtains a correct (possibly un-simplified) expression using the limits 5 and 1 and writes $(2x-1)^{\frac{1}{2}}$ as $(2x-1)(2x-1)^{-\frac{1}{2}}$	B1
	$I_{n} = 5^{n} \times 3 - 1 - 2nI_{n} + nI_{n-1}$	Replaces $\int x^{n} (2x-1)^{-\frac{1}{2}} dx \text{ with } I_{n}$ and $\int x^{n-1} (2x-1)^{-\frac{1}{2}} dx \text{ with}$ I_{n-1}	dM1
	$(2n+1)I_n = nI_{n-1} + 3 \times 5^n - 1 *$	Correct completion to printed answer with no errors seen	A1cso
			(5)
(b)	$I_0 = \int_1^5 (2x-1)^{-\frac{1}{2}} dx = \left[(2x-1)^{\frac{1}{2}} \right]_1^5 = 2$	$I_0 = 2$	B1
	$5I_2 = 2I_1 + 74$ and $3I_1 = I_0 + 14$	M1: Correctly applies the given reduction formula twice A1: Correct equations for I_2 and I_1 (may be implied)	M1 A1
	So $I_1 = \frac{16}{3}$ and $I_2 =$ or $5I_2 = 2\frac{I_0 + 14}{3} + 74$ and $I_2 =$	Completes to obtains a numerical expression for I_2	dM1
	$I_2 = \frac{254}{15}$		B1
			(5)
			Total 10

Question Number	Scheme		Marks
6. (a)	$\begin{pmatrix} 4 & 2 & 3 \\ 2 & b & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ \dots \end{pmatrix}, = \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \lambda = 8$	M1: Multiplies the given matrix by the given eigenvector	M1, M1, A1
	$\begin{vmatrix} a & 1 & 8 \end{vmatrix} = 0 \begin{vmatrix} a & 1 & 8 \end{vmatrix} = 0 \begin{vmatrix} a & 1 & 0 \end{vmatrix}$	M1: Equates the <i>x</i> value to λ	
		A1: $\lambda = 8$	
			(3)
	$\begin{pmatrix} 8 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	M1: Their $2 + 2b = 2\lambda$ or their $a + 2 = 0$	
(b)	$\begin{vmatrix} 2+2b \\ +2 \end{vmatrix} = "8" \begin{vmatrix} 2 \\ 0 \end{vmatrix}$ So $a = -2$ and $b = 7$	A1: <i>b</i> = 7 or <i>a</i> = -2	M1 A1 A1
	(a+2) (0)	A1: <i>b</i> = 7 and <i>a</i> = -2	
			(3)
(c)	$\begin{vmatrix} 4-\lambda & 2 & 3 \end{vmatrix}$		
	$2 7-\lambda 0$	=0	M1
	$\begin{vmatrix} -2 & 1 & 8-\lambda \end{vmatrix}$		1011
	$\therefore (4-\lambda)(7-\lambda)(8-\lambda) - 2 \times 2(8-\lambda)$	$(3+3(2+2(7-\lambda))) = 0$	
	Correct attempt to establish the Characteristic Equation.		
	= 0 is required but may be implied by later work		
	Allow this mark if the equation		
	Attempts to factorise i.e. $(8 - \lambda)(30 - 11\lambda +$	λ^2) or $(6-\lambda)(40-13\lambda+\lambda^2)$	N/1 A 1
	or $(5-\lambda)(48-14\lambda + \lambda^2)$ (NB $240-118\lambda + 19\lambda^2 - \lambda^3 = 0$) M1: Attempt to factorise their cubic – an attempt to identify a linear factor and processes to obtain a simplified quadratic factor A1: Correct factorisation into one linear and one quadratic factor		MIAI
	Figanyaluas are 5 and 6	obtain the other eigenvalues	M1 A1
		A1: 5 and 6	
			(5)
			Total 8

Question Number	Scheme		Marks
7(a)	Put $6\cosh x = 9 - 2\sinh x$		M1
	$6 \times \frac{1}{2} (e^{x} + e^{-x}) = 9 - 2 \times \frac{1}{2} (e^{x} - e^{-x})$	Replaces cosh <i>x</i> and sinh <i>x</i> by the correct exponential forms	M1
	$4e^{x} + 2e^{-x} - 9 = 0 \implies 4e^{2x} - 9e^{x} + 2 = 0$	M1: Multiplies by e^x A1: Correct quadratic in e^x in	M1 A1
	So $e^x = \frac{1}{4}$ or 2 and $x = \ln 2$ or $\ln \frac{1}{4}$	M1: Solves their quadratic in e^x A1: Correct values of x (Any correct equivalent form)	M1 A1
			(6)
(b)		$\int (9-2\sinh x - 6\cosh x) dx $ or	
	Area is $\int (9-2\sinh x - 6\cosh x) dx$	$\int (6\cosh x - (9 - 2\sinh x)) \mathrm{d}x$	M1
	J	or the equivalent in exponential	
	$\pm (9r - 2\cosh r - 6\sinh r)$ or	M1: Attempt to integrate	
	$\pm (9x - 4e^x + 2e^{-x})$	A1: Correct integration	M1 A1
	$\pm ([9\ln 2 - 2\cosh \ln 2 - 6\sinh \ln 2] - [9\ln \frac{1}{4} - 2\cosh \ln \frac{1}{4} - 6\sinh \ln \frac{1}{4}])$		dM1
	Complete substitution of their limits from part (a). Depends on both previous M's		
	$=\pm(9\ln(2\div\frac{1}{4})-(e^{\ln 2}+e^{-\ln 2})-3(e^{\ln 2}-e^{-\ln 2})+(e^{\ln\frac{1}{4}}+e^{-\ln\frac{1}{4}})+3(e^{\ln\frac{1}{4}}-e^{-\ln\frac{1}{4}}))$		M1
	Combines logs correctly and uses cosh and sinh of ln correctly at least once		
	$\left(9\ln 8 - \frac{5}{2} - \frac{18}{4} + 4.25 - 11.25\right) = 9\ln 8 - 14 \text{ or } 27\ln 2 - 14$		A1cao
	Any correct equivalent		
	Subtracting the wrong way round could score 5/6 max		
			(6) Totel 12
	Note		10tal 12
	If they use $4e^{2x} - 9e^x + 2$ in (b) to find the area – no marks		

Question Number	Scheme		Marks
8(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$	Correct derivative (may be un- simplified)	B1
	$s = \int \sqrt{1 + (x^{-\frac{1}{2}})^2} dx = \int_1^8 \sqrt{(1 + \frac{1}{x})} dx$	A correct formula quoted or implied. There must be some working before the printed answer.	B1
			(2)
(b)	$x = \sinh^2 u \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = 2\sinh u \cosh u$	Correct derivative	B1
	$(1+\frac{1}{x}) = 1 + \operatorname{cosech}^2 u = \operatorname{coth}^2 u$	$(1+\frac{1}{x}) = \coth^2 u \text{ or } (1+\frac{1}{x}) = \frac{\cosh^2 u}{\sinh^2 u}$ (may be implied by later work)	B1
	$s = \int \coth u \cdot 2 \sinh u \cosh u du =$	M1: Complete substitution	
	$\int 2\cosh^2 u du$	A1: $\int 2\cosh^2 u du$	M1 A1
	$= u + \frac{1}{2}\sinh 2u \text{ or } \frac{1}{4}e^{2u} + u - \frac{1}{4}e^{-2u}$	M1: Uses $\cosh 2u = \pm 2 \cosh^2 u \pm 1$ or changes to exponentials in an attempt to integrate an expression of the form $k \cosh^2 u$ A1: Correct integration	dM1 A1
	$x = 8 \Rightarrow u = \operatorname{arsinh} \sqrt{8} = \ln(3 + 2\sqrt{2}), \ x = 1 \Rightarrow u = \operatorname{arsinh} 1 = \ln(1 + \sqrt{2})$		
	$\left[u + \frac{1}{2}\sinh 2u\right]_{\text{arsinh}}^{\text{arsinh}\sqrt{8}}$		
	$= \operatorname{arsinh} \sqrt{8} + \frac{1}{2} \operatorname{sinh} (2\operatorname{arsinh} \sqrt{8}) - (\operatorname{arsinh} 1 + \frac{1}{2} \operatorname{sinh} (2\operatorname{arsinh} 1))$		
	or $\begin{bmatrix} \frac{1}{4}e^{2u} + u - \frac{1}{4}e^{-2u} \end{bmatrix}_{\text{arsinh}1}^{\text{arsinh}\sqrt{8}}$		ddM1A1
	$=\frac{1}{4}e^{\arcsin n\sqrt{8}} + \operatorname{arsinh} \sqrt{8} - \frac{1}{4}e^{-2\arcsin n\sqrt{14}}$		
	or $\left[\operatorname{arsinh} \sqrt{x} + \frac{1}{2} \operatorname{sinh} (2 \operatorname{arsinh} \sqrt{x}) \right]_{1}^{8}$		
	$= \operatorname{arsinh} \sqrt{8} + \frac{1}{2} \sinh(2\operatorname{arsinh} \sqrt{8}) - (\operatorname{arsinh} 1 + \frac{1}{2} \sinh(2\operatorname{arsinh} 1))$		
	M1: The limits arsinh $\sqrt{8}$ and arsinh1 or their $\ln(3+2\sqrt{2})$ and $\ln(1+\sqrt{2})$ used		
	correctly in their $f(u)$ or the limits 8 and 1 used correctly if they revert to x Dependent on both previous M/2		
	A1: A completely correct expression		
	$\ln(1+\sqrt{2})+5\sqrt{2}$		A1
			(9)
1			10tal 11