				-	
1	(i)	0.3g - T = 0.3a and	M1		For using Newton's second law (either
		T - 0.4g = 0.4a			particle) condone 0.3ga,0.4ga and
			A1		!(LHS)
					Both correct. SR Accept T -0.3 g =
					0.3a etc as correct only if consistent
		-0.1g = 0.7a	M1		with a shown as upwards for P on c's
		a = -1.4	A1	[4]	_
			AI	[4]	diagram
		See appendix for substituting			Eliminating T
		$\frac{a = -1.4}{a}$			AG
	(ii)	$0 = 2.8t - \frac{1}{2} \cdot 1.4t^2$	M1		
		0 = t(2.8 - 0.7t)	M1		
		Time taken is 4 s	A1	[3]	For using $s = ut + \frac{1}{2} at^2$ with $s = 0$
		OR			Solving QE
		(0.3 + 0.4)a = (0.3 - 0.4)g	M2		From correct equation only
			A1		1
		a = -1.4	A1	[4]	For using $(m_1 + m_2)a = (m_1 - m_2)g$
	(*)	0 = 2.8 + -1.4t	M1	[.,]	No application of SR shown above
	(i)	t = 2.8/1.4	M1		AG
		Time taken is 4 s	A1	[3]	
		Time taken is 4 s	Α1		For using $v = u + at$ with $v = 0$
	(ii)				Solve for t, and double <u>or any other</u>
					complete method for return time
_	1	1	- -	1	1
2	(i)	$T\sin\alpha = 0.08 \text{ x } 1.25$	M1		Newton's second law condone cos,
		= 0.1	A1	[2]	and
	(ii)	$T\cos\alpha = 0.08g$	M1		0.08g for mass but not part of
			A1		force
			M1		Resolving forces vertically, condone
		$T^2 = 0.1^2 + 0.784^2$ or $\alpha =$	A1		sin
		7.3°	A1	[5]	May be implied by $T^2 = 0.1^2 + 0.784^2$
		T = 0.79			For eliminating α or T
		1 = 0.79			$\alpha = 7.3^{\circ}$ or better
					Accept anything rounding to 0.79
					Accept anything rounding to 0.77
3	(i)		M1		For using $a = dv/dt$
	(1)	a = 7.2 - 0.9t	A1		1 of using a — aviai
		$u - i \cdot \lambda = 0.5i$	M1		For attempting to solve $a(t) = 0$
		T _ 9	A1	Γ <i>1</i> 1	For attempting to solve $u(t) = 0$
		T=8	AI	[4]	
		See also special case in			
		appendix.	D.1		-2
	(ii)	v(T) = 28.8	B1		AG (From $7.2 \times 8 - 0.45 \times 8^2$)
		See also special case in			
	 	appendix.]	[1]	
	(iii)				For using $s = \int v dt$
			M1		1 or using s – J vai
		$s = 3.6t^2 - 0.15t^3 (+C)$	A1		
			DM1		For finding $s(T \text{ or } 31)$ or using limits
					(0) to <i>T</i> or (0) to 31 (dep on
		s = 153.6 (+C)	A1	1	integration)
		s at constant speed = 662.4	B1ft		Condone + <i>C</i>
		Displacement is 816 m		[6]	For using $(31 - \text{cv } T) \times 28.8$
		Displacement is 010 in	A1ft	[6]	cv 153.6 + cv 662.4 (non-zero
					•
					numerical)

4	(i)	$F = 12\cos 15^{\circ}$	M1		Resolve horizontally (condone
					sin)
		Frictional component is 11.6 N	A1	[2]	Accept 12cos 15°
	(ii)	$N + 12\sin 15^{\circ} = 2g$	M1		Resolve vert 3 forces (accept
					cos)
		Normal component is 16.5 N	A1	[2]	AG
	(iii)	$11.591 = \mu 16.494$	M1		For using $\operatorname{cv} F = \mu \operatorname{cv} N$
		Coefficient is 0.7(0)	A1ft	[2]	Ft cv <i>F</i> to 2 sf. $\mu = 0.7027$
	(iv)	N=2g	B1		
		$F = 19.6 \times 0.7027$	M1		
			M1		For using Newton's second law
		20 - 13.773 = 2a	A1ft		cv Tractive - cv Friction (e.g.
					from (i))
		Acceleration is 3.11 ms ⁻²	A1	[5]	Accept either 3.11 or 3.12 only
		MISREAD (omits "horizontal")	MR-1		All A and B marks now ft.
					Subtract "MR-1" from initial B1
					or final A1 (not A1ft in main
		$N = 2g - 20\sin 15$	B1ft		scheme).
		$F = 0.7027 \times 14.4$	M1		Equals 14.42
			M1		Equals 10.1
		$20\cos 15 - 10.14 = 2a$	A1ft		For using Newton's second law
		Acceleration is 4.59 ms ⁻²	A1ft	[4]	cv Tractive - cv Friction
					Accept 4.59, 4.6(0)

5	(i)		Graph with 5			'Wait' line
	(2)		straight line			segment may not
			segments and			be distinguishable
			with v single			from part of the t
		$ \uparrow\rangle$	valued.	B1		axis. Attempt at all
		ν(m/s)				lines segments
		ΙΙ				fully straight.
		/\	Line segment			Mainly straight,
		/ \	for car stage	B1		ends on <i>t</i> -axis
			Line segment			Horizontal below
		\	for walk	B1		t-axis. Ignore
			stage			linking to axis.
			Line segment			Can be implied by
		<i>t</i> (s)	for wait stage			gap between walk
				D1		and motor-cycle
			0.1:	B1		stages
			2 line			Inverted V not U,
			segments for	B1		mainly straight. Condone vertex
			motor-cycle	ы	[5]	below <i>x</i> intercept.
	(ii)	d = 12/8	stage		151	Using gradient
	(11)	u = 12/6		M1		represents accn
		Deceleration is 1.5 ms ⁻²		A1	[2]	Or $a = -1.5 \text{ ms}^{-2}$
	(iii)				- r <u>-</u> 1	Using area
	()			M1		represents
						displacement.
		$t_{\text{walk}} = 420/0.7$		B1		Accept 600
		$t_{\rm motorcycle} = 42$		B1		Ignore method
		T = 8 + 600 + 250 + 42 = 900		A1	[4]	

6	(i)	$T_{\rm A}\cos\alpha - T_{\rm B}\cos\beta = W$	M1		For resolving 3 forces vertically, condone <i>Wg</i> , sin
		$T_{\rm A} = T_{\rm B} \; (=T)$	B1		May be implied or shown in diagram
		$\cos \alpha > \cos \beta \rightarrow \alpha < \beta$	A1	[3]	AG
	(ii)(a)	$T\sin\alpha + T\sin\beta = 14$	M1		Resolve 3 forces horiz accept
					cos
		$\sin \alpha = 0.6$ and $\sin \beta = 0.8$	DM1		
		Tension is 10 N	A1	[3]	
	(ii)(b)	$10\cos\alpha - 10\cos\beta = W$	M1		Must use cv T, and W (not Wg)
		$\alpha = 36.9^{\circ}, \ \beta = 53.1^{\circ}$	DM1		Or $\cos \alpha = 0.8$ and $\cos \beta = 0.6$
					$SR - 1$ for assuming $\alpha + \beta = 90^{\circ}$
		W=2	A1 ft	[3]	ft for T/5 (accept 1.99)
		See appendix for solution based			_
		on resolving along RA and RB.	[
	(iii)	R is below B	B1		Accept R more than 0.5 m
					below A
		Tension is 1 N	B1 ft	[2]	ft for W/2 accept W/2

	1				
7	(i)	Initial momentum			(or loss in A's momentum =
		$= 0.15 \times 8 +$	B1		0.15×8
		0.5×2			B1
		Final momentum = $0.5v$	B1		and gain in B's momentum =
					0.5(v-2)
		$0.15 \times 8 + 0.5 \times 2 = 0.5v$			B1)
		$(\text{or } 0.15 \times 8 = 0.5 \times (v - 2))$	M1		For using the principle of
			1.22		conservation of momentum
		v = 4.4	A1	[4]	condone inclusion of g in all
		$(m)g\sin\alpha = (\pm)(m)a$	M1	ניין	terms
		1	A1		SR Awarded even if g in all
		$a = (\pm)4.9$	AI		
		EITHER (see also part (ii))	3.41		terms Condone cos
		$0 = 4.4^2 - 2 \times 4.9s$	M1		Condone cos
		s = 1.97 or 1.98 m	A1ft		
		OR			
		$v^2 = 4.4^2 - 2 \times 4.9 \times 2$	M1		For using $v^2 = u^2 + 2as$ with $v = $
		$v^2 = -0.24$	A1ft		0
		OR (see also part (ii))			Accept $s < 2 \text{ iff } s = 4.4^2 / ($
		$t = 4.4/4.9 \ (=0.898)$ with either			2×4.9)
		$s = 4.4 \times 0.898 - 0.5 \times 4.9 \times$			2 2
		$0.898^2 \text{or} s = (4.4 + 0)/2 \times$	M1		For using $v^2 = u^2 + 2as$ with $s =$
		0.898	A1ft	[4]	2
		s = 1.97 or 1.98 m			Accept $v^2 < 0$
					Both parts of method needed
					Accept $s < 2$
	(ii)	$2 = \frac{1}{2}4.9 t_A^2$	M1		cv for acceleration
		$t_{\rm A} = 0.904$	A1		Accept 0.903= <time=<0.904< th=""></time=<0.904<>
		EITHER			•
		$2 = (-4.4)t_{\rm B} + \frac{1}{2} \cdot 4.9t_{\rm B}^2$	M1		Appropriate use of $s = ut + \frac{1}{2}$
		$t_{\rm B} = (4.4! \oplus (4.4^2))$	M1		at^2 Correct method for solving
		$+4 \times 2.45 \times 2)/4.9$	A1		QE
		$t_{\rm B} = 2.17$	A1		2.171
		$t_{B-1} = 2.17$ $t_{B-1} = 4$ $t_{A-1} = (2.17 - 0.9) = 1.27 s$	***		
		$\frac{l_{\rm B} \cdot l_{\rm A}}{OR} = (2.17 - 0.9) = 1.27 {\rm S}$	M1		
		$t_{\text{up}} = 4.4/4.9 \ (=0.898)$	M1		Or using $s_{\rm up}$ to find $t_{\rm up}$
		$t_{\text{up}} = 4.4/4.9 (=0.898)$ $(2 + 1.98) = 0.5 \times 4.9 \times t_{\text{down}}^2$	A1		$s = ut + \frac{1}{2} at^2$ with cv s in part
		(2 + 1.70) - 0.3 \ 4.9 \times \ l_{down}	A1		3 - ui + 72 ui with $cv s in part$
		$t_{\text{down}} = 1.27$	Λ1		I ` ` ′
		$t_{\text{B}} \cdot t_{\text{A}} = (0.9 + 1.27 - 0.9) = 1.27\text{s}$			Not the final answer
		OR 0 4 44 1/ 4 0 2	MI		
		$0 = 4.4t - \frac{1}{2}4.9t^2$	M1		$s = ut + \frac{1}{2} at^2 \text{ with } s = 0 = 1.796$
		(i.e. approx 1.8 s to return to	N/1		$s = ut + \frac{1}{2}at$ with $s = 0 = 1.796$
		start)	M1		
		$2 = 4.4t + 4.9t^2$	A1		
		t = 0.376	A1	[5]	
		$t_{\rm B} \cdot t_{\rm A} = 1.796 + 0.376 - 0.9 =$			
		1.27s			