

Mark Scheme (Results) January 2013

GCE Chemistry (6CH02) Paper 01 Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code US034333

All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	С		1

Question Number	Correct Answer	Reject	Mark
2	В		1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	С		1

Question Number	Correct Answer	Reject	Mark
5	D		1

Question	Correct Answer	Reject	Mark
Number			
6	Α		1

Question	Correct Answer	Reject	Mark
Number			
7	Α		1

Question Number	Correct Answer	Reject	Mark
8	В		1

Question Number	Correct Answer	Reject	Mark
9	Α		1

Question Number	Correct Answer	Reject	Mark
10	С		1

Question	Correct Answer	Reject	Mark
Number			
11	D		1

Question Number	Correct Answer	Reject	Mark
12	В		1

Question Number	Correct Answer	Reject	Mark
13	С		1

Question	Correct Answer	Reject	Mark
Number			
14	D		1

Question Number	Correct Answer	Reject	Mark
15	D		1

Question Number	Correct Answer	Reject	Mark
16	Α		1

Question	Correct Answer	Reject	Mark
Number			
17	В		1

Question Number	Correct Answer	Reject	Mark
18	Α		1

Question	Correct Answer	Reject	Mark
Number			
19	В		1

Question Number	Correct Answer	Reject	Mark
20	С		1

TOTAL FOR SECTION A = 20 MARKS

Section **B**

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	First two marks Cl in Cl ₂ is 0 Goes to +1 in HClO Goes to -1 in HCl All three correct for two marks	Only 'Cl ⁺ ' for oxidation number +1 Only 'Cl ⁻ ' for oxidation number	3
	Any two correct for one mark Ignore correct oxidation numbers for other elements If three correct numbers given without saying what species they are in max 1 for these two marks Third mark	 -1 (treat each separately) For each incorrect oxidation number change for O and H, lose one mark. 	
	CI/Cl ₂ /the same element is both oxidized and reduced Allow same molecule/species/ type of atom is both oxidized and reduced if answer elsewhere has been in terms of chlorine OR CI/Cl ₂ /the same element both increases and decreases in oxidation number		
	OR Chlorine both loses and gains electrons (1)	0 to +1 described as reduction and/or 0 to -1 described as oxidation (for third mark)	

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	Equilibrium moves to the left / moves in reverse direction / moves to increase concentration of reactants(1)	Just "reverse reaction is favoured"	2
	To use up (some of) added HCI/ to react with added HCI/ to stop formation of HCI/ restores equilibrium by producing more chlorine and water (1)	Just "to counteract the change in the system" To minimise effect of HCI	
	Second mark depends on first Allow 'moves to decrease concentration of products/HCI' for both marks		

Question Number	Acceptable Answers		Reject	Mark
21(b)(i)	$CIO^{-} + 2H^{+} + 2e^{(-)} \rightarrow CI^{-} + H_{2}O$ $ALLOW$ $CIO^{-} + 2H^{+} \rightarrow CI^{-} + H_{2}O - 2e^{(-)}$	(1)	Equations without electrons	2
	$2l^- \rightarrow l_2 + 2e^{(-)}$			
	ALLOW $2I^{-} - 2e^{(-)} \rightarrow I_{2}$ Allow multiples	(1)		
	Ignore state symbols even if incorrect			

Question	Acceptable Answers	Reject	Mark
Number			
21(b)(ii)	$CIO^{-} + 2H^{+} + 2I^{-} \rightarrow CI^{-} + H_2O + I_2$	Equations including	1
	Mark independently. No TE on 21(b)(i)		

Question Number	Acceptable Answers		Reject	Mark
21(b)(iii)	Moles thiosulfate = $(24.20 \times 0.0500 / 1000) =$ 1.21 x 10 ⁻³ /1.2 x 10 ⁻³ /0.00121/ 0.0012 (mol)	² (1)	1.20 x 10 ⁻³ (mol) 1x 10 ⁻³ / 0.001	2
	Moles iodine = half moles of thiosulfate = $6.05 \times 10^{-4} / 6.1 \times 10^{-4} / 0.000605 / 0.00061$ (mol) Correct answer without working	(1) (2)	6.0 x 10 ⁻⁴ (mol) 6 x 10 ⁻⁴ (mol)	

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Moles $CIO^{-} = 6.05 \times 10^{-4}$ (mol) TE on (b)(ii) and (b)(iii):		1
	If ratio $CIO^-:I_2 = 2:1$ answer is 2 x answer to (b)(iii)		
	If ratio $CIO^-:I_2 = 1:2$ answer is half of answer to (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(v)	Concentration = $(6.05 \times 10^{-4} \times 1000/25)$ = 2.42 x 10 ⁻² / 0.0242/ 0.024/ 2.4 x 10 ⁻² (mol dm ⁻³) TE. Answer to (b)(iv) x 1000÷ 25	Answers to 1 significant figure	1
<u> </u>		L	
Question Number	Acceptable Answers	Reject	Mark
21(b)(vi)	(Minimum) amount of I ⁻ to react with OCI ⁻ = 2 x answer to (b) (iv) = 2 x 6.05 x 10 ⁻⁴ = 1.21 x 10 ⁻³ (mol) (1) Allow TE for 2 x answer to (b) (iv) Ignore s.f. Moles of I ⁻ (9.04 x 10 ⁻³) is more than this number of moles of CIO ⁻ / I ⁻ is in excess / KI is in excess / so that all the CIO ⁻ can react (1) OR 9.04 x 10 ⁻³ mol I ⁻ can react with 4.52 x 10 ⁻³ mol OCI ⁻ (1) Ignore s.f. TE from incorrect equation in (b) (ii) Moles OCI ⁻ (6.05 x 10 ⁻⁴) is less than this/ I ⁻ is in excess / KI is in excess / so that all the	"KI is in excess" if no calculation has been done.	2

Question	Acceptable Answers	Reject	Mark
Number			
21(b)(vii)	0.30 x 100 / 24.2		1
	(=1.2396694)		
	= 1.24/ 1.2 %		

CIO⁻ can react

(1)

Question Number	Acceptable Answers	Reject	Mark
21(b)(viii)	Judgement (of colour change) at end point / adding starch too early in the titration / jet of burette not filled	Some potassium iodide did not dissolve	1
	Errors must cause an increase in titre.	Leaving funnel in burette	
	Ignore		
	Just "Human error"	Errors which affect both the students titre and an	
	Just 'overshot endpoint'	accurate titre using	
	Transfer errors / spillage	e.g. impure solutions	
	Errors due to misreading burette / pipette		

Question Number	Acceptable Answers	Reject	Mark
21(c)	(Cl radicals) break down ozone (layer)/ ozone depletion / ozone (layer) thinning	Global warming	1
		Causes acid rain	
	Allow damage ozone (layer)/ react with ozone		

Total for Q21 = 17 marks

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Br	Br	1
	Allow the bond to Br to be before or after the zig-zag line representing the 4C atoms, and to be at any angle Ignore bonds of unequal length		

Question	Acceptable Answers	Reject	Mark
Number			
22(a)(ii)	2-iodo-(2-)methylpropane	2,2- iodomethylpropane	1
	Ignore punctuation (brackets, hyphens, commas)	2-iodobutane	

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	$\begin{array}{l} C_{4}H_{9}Br + 2NH_{3} \rightarrow C_{4}H_{9}NH_{2} + NH_{4}Br \\ \hline \textbf{OR} \\ C_{4}H_{9}Br + NH_{3} \rightarrow C_{4}H_{9}NH_{2} + HBr \\ \hline \textbf{OR} \\ C_{4}H_{9}Br + NH_{3} \rightarrow C_{4}H_{9}NH_{3}^{(+)}Br^{(-)} \\ \hline \textbf{Accept structural / skeletal formula for X} \\ and product \\ \hline Allow inorganic product as ions \\ \end{array}$	Just word equations Molecular formula for organic product i.e. C ₄ H ₁₁ N Equation for elimination reaction	2
	Butylamine / 1-aminobutane / 1-butylamine/ 1-butanamine/ butan-1-amine (1)	Aminobutane Butamine	
	Ignore incorrect spacing and punctuation	Any am ide	
	OR (N) butyl ammonium bromide if third equation given (1)		
	OR Answers with multiple substitutions giving $(C_4H_9)_2$ NH (1) dibutylamine (1) $(C_4H_9)_3$ N (1) tributylamine (1) $(C_4H_9)_4$ N ⁽⁺⁾ Br ⁽⁻⁾ (1) tetrabutyl ammonium bromide (1)		
	No TE on naming a product in an incorrect equation except if C_4H_8 is shown in a correct or incorrect elimination equation then 1 mark for naming it but-1-ene		

lf	correct equation and name	
(e	e.g. 2-amino-2-methylpropane) are given	
us	sing Y max 1	

Question Number	Acceptable Answers	Reject	Mark
Question Number 22 (a) (iv)	Acceptable Answers $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Reject Half arrows, but don't penalise twice δ^+ charge on intermediate	Mark 3
	Mechanism for X instead of Y Max 2 Correct SN2 mechanism can score first mark and third mark for arrow from OH^{-} to $C^{(\delta_{+})}$		

Question Number	Acceptable Answers	Reject	Mark
22(a)(v)	(Nucleophilic) elimination (reaction) (of HI)	Electrophilic elimination Nucleophilic substitution	1
		Dehydration	

Question Number	Acceptable Answers		Reject	Mark
22(b)	X Cream precipitate Allow off white / creamy white / white- cream / (very) pale yellow	(1)	Yellow/ creamy yellow precipitate for X	2
	Y yellow precipitate	(1)	Pale yellow precipitate for Y	
	One mark for two correct colours but not precipitates Mention of precipitate without colours doesn't score Ignore identity of precipitates even if incorrect	t		

Question Number	Acceptable Answers	Reject	Mark
22(c)	C-Br stronger / C-I weaker with an attempt at an explanation (correct or incorrect) (1)		2
	as bond is shorter/ Br (atom) is smaller / as nuclei are closer	Br_2 is smaller References to Br^2	
	OR reverse argument (1)	implying bond is ionic.	
	Br is more electronegative/ there is a bigger electronegativity difference / bond is more	Br is more reactive	
	polar / C ^{&+} and Br ^{&-} attract more strongly / Br is less shielded		
	Second mark depends on first		

Total for Q22 = 12 marks

uestion Number	Acceptable Answers	Reject	Mark
23(a)(i)	109 (°) / 109.5 (°) / 109° 28′		1

Question Number	Acceptable Answers	Reject	Mark
Number 23(a) (ii)	104 - 106 (°)(1)O atom has two lone pairs (and 2 bonding pairs)(1)This mark can be given independently of the first and third mark(1)Lone pairs repel each other more than bonding pairs / angle is reduced to minimise repulsion (by lone pairs) / to maximise separation (of lone pairs)(1)Ignore 'bonds repel each other'(1)Angle in (ii) must be smaller than in (i) for third mark to be given(1)	Lone pairs repel H atoms	3

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	Any two from Fizzing / effervescence / bubbles (of gas) (1)	Just "Hydrogen forms"/"gas forms"	2
	Sodium dissolves / disappears / reduces in size (1)	Fumes	
	White solid /precipitate forms(1)		
	Ignore identification of products even if incorrect.		
	Ignore sodium melting / moving around / sinking / floating		
	Ignore colourless solution forms		
	Ignore temperature changes / sodium going on fire		

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	$\begin{array}{ccc} C_6H_{11}OH + PCI_5 \rightarrow HCI + C_6H_{11}CI + POCI_3 \\ \textbf{(1)} \textbf{(1)} \end{array}$		2
	(1) for HCI(1) for rest of the equation correct	C₅H11COH	
	Cyclohexanol can be skeletal, $C_6H_{11}OH/C_6H_{12}O$	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHOH Unless a bond is shown connecting	
	Accept 'PCI ₃ O' instead of POCI ₃ Accept skeletal formula for C ₆ H ₁₁ CI	C1 and C6	
	CI CI		
	Ignore state symbols		

Question Number	Acceptable Answers	Reject	Mark
23(b)(iii)	White smoke / solid with ammonia Allow white fumes / dense white fumes / steamy white fumes OR White precipitate with silver nitrate Ignore reference to ammonia solution unless HCI is specifically bubbled into solution Ignore using an indicator to show gas is	Just steamy / misty fumes Just testing with an indicator Bleaches litmus	1
	acidic with one of the above tests Ignore description of appearance of HCI before testing		

Question Number	Acceptable Answers	Reject	Mark
23(b)(iv)			1

Question Number	Acceptable Answers	Reject	Mark
23(b)(v)	(Colour change from) Orange to green / blue / brown	blue- green green-blue yellow to green	1

Question Number	Acceptable Answers	Reject	Mark
23(c)	C ₆ H ₁₀ ⁽⁺⁾	$\begin{array}{c} C_{6}H_{10}^{-} \\ (CH_{2})_{5}C \\ C_{5}H_{10}C \\ C_{6}H_{11} \\ (CH)_{5}OH \\ C_{2}(CH_{2})_{3}O \end{array}$	1

Total for Q23 = 12 marks

Question Number	Acceptable Answers	Reject	Mark
24(a)	CO ₂ has polar bonds / oxygen does not have polar bonds (1)	CO ₂ is a polar molecule	2
	Ignore O ₂ is a non polar molecule		
	(As it vibrates) polarity of CO ₂ changes / dipole moment changes / shifts (1)		
	Allow "Oxygen has no difference in electronegativity so polarity does not change" for 2 marks		

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	 Hydrogen bonds can form with water Allow full description of hydrogen bonds in absence of name. Ignore incorrect naming of functional groups in aminoethanol. 	Just "it is polar"	1

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	Exothermic, with attempt at a reason OR reverse reaction is endothermic, with attempt at a reason (1) Reaction will go in the endothermic direction on heating / equilibrium moves to left to use up heat supplied (1) Second mark depends on the reaction being exothermic in first mark	Just "exothermic"	2

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	Electrons in double bond (1) Other electrons (1) Second mark dependent on first Only bonding electrons need be shown If inner shell electrons are included they must be correct. Electrons may be on circles, within circles o no circles may be shown.	r	2

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	Number of electrons (per molecule) is greater in CO_2 (than methane). If numbers are given must be correct. CO_2 has $22e^-$, methane has $10e^-$. Ignore CO_2 has larger surface area than methane	double bonds in CO ₂ as the cause	1

Question	Acceptable Answers	Reject	Mark
Number			
24(c) (iii)	Butane has a greater surface area / butane is less branched(1)so more contact between (neighbouring) molecules / (neighbouring) molecules pack better(1)OR Reverse argument for 2-methylpropane		2

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	Mg – no colour in flame (1) Allow 'no flame visible' Ca brick red / red / yellow-red / red-orange (1)	Mg: white flame Bright / white light Clear flame Just orange	2

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	First mark: Detect thermal decomposition by Passing gas into / reacting gas with lime water OR By collecting the gas evolved (in syringe or by displacement)	First mark: Combustion Heating carbonate solution	4
	By measuring change of mass (1)		
	Second mark: Measure time for (same volume) of lime water to go milky OR	Second mark:	
	Measure volume of gas produced in a measured time OR Measure time for a specified / same volume	Just "measure volume of gas produced"	
	of gas to form OR Find loss of mass after heating samples for equal time (1)	Measure time for a specified change in mass to occur	
	The mark for measurement should only be given if it matches the suggested method of detection.		
	Third and fourth marks:For fair comparisonAny two from:Keep strength of flame constant(1)		
	Distance of flame from containing tube constant (1)		
	Use carbonates with similar particle size (1)		
	Same volume of lime water (1)		
	Heat equal moles / same amount of each carbonate (1)		
	Judge equal milkiness of lime water using a piece of paper marked with a cross (1) The marks for fair comparison should only be given if they match the suggested method of detection.		
	Ignore 'heat same mass' and 'known mass' Ignore using water bath as source of heat		

Ignore 'heat to same temperature' Ignore 'use same heat source' Ignore 'constant heat'	
These points could be shown on a diagram but marks are for the principles, not the detail of drawing a sketch diagram.	

Question	Acceptable Answers	Reject	Mark
24(d)(iii)	CaCO ₃ more stable / MgCO ₃ less stable (1)		3
	Mg^{2+} is smaller than Ca^{2+} / magnesium ions are smaller than calcium ions / charge density of Mg^{2+} is greater than Ca^{2+} / Ca^{2+} has more shells (1)	Mg is smaller "It" (unspecified) is smaller MgCO3 is smaller	
	EITHER Mg ²⁺ causes more distortion of carbonate ion / more weakening of C-O / more polarisation of carbonate / more polarisation of anion / has more polarising power	More disruption of ion Polarisation of	
		molecules	
	OR More energy is given out when MgO forms as the MgO lattice is stronger than CaO /as the 2+ ions can get closer to the 2 ⁻ ions on decomposition (1)	CaO is less stable than MgO	
	Second and third marks can be scored if conclusion given in first mark is wrong		

Total for Q24 = 19 marks

TOTAL FOR SECTION B = 60 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code US034333 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

