

MATHEMATICS

9709/43 May/June 2018

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/43

Question	Answer	Marks	Guidance
1(i)	$0.4 \text{ (m s}^{-2})$	B1	
	Total:	1	
1(ii)	$[9040 = \frac{1}{2}(600 + T) \times 16]$	M1	Equating area of the trapezium to the total distance or using $s = \frac{1}{2} (u + v)t$ or equivalent
	Time is 530 (s)	A1	
	Total:	2	
1(iii)	$[s = \frac{1}{2} \times (600 - 530 - 40) \times 16]$	M1	Use of triangular area, or equivalent
	Distance is 240 (m)	A1	
	Total:	2	

Question	Answer	Marks	Guidance
2	$[V^2 = 5^2 + 2 \times g \times 7.2]$	M1	Use of <i>uvast</i> to find <i>V</i>
	<i>V</i> = 13	A1	
	$[13 = 5 + gt t = \dots] 0.8 (s)$	M1	Use of <i>uvast</i> to find time for A to reach ground
	$[0 = 6.5 - gt t = \dots]$ 0.65 (s)	M1	Use of <i>uvast</i> to find time from ground to B
	Total time is 1.45 (s)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
3		M1	For resolving forces in any one direction
	E.g. $X = 18 + 12\sin 60^\circ - 8\sin 30^\circ$ $14 + 6\sqrt{3}$	A1	One correct equation or expression
	E.g. $Y = 8\cos 30^\circ + 12\cos 60^\circ$ $6 + 4\sqrt{3}$	A1	Second correct equation or expression (<i>X</i> and <i>Y</i> may denote components of resultant of given 3 forces or may be components of the fourth force that would produce equilibrium)
	$[(14+6\sqrt{3})^2+(6+4\sqrt{3})^2]$ or $[\tan^{-1}(6+4\sqrt{3})/(14+6\sqrt{3})]$	M1	Use of Pythagoras or appropriate trig to find magnitude or angle
	Magnitude is 27.6 (N)	A1	Not for resultant
	Direction is 27.9° below 'negative <i>x</i> -axis'	A1	Not for 27.9° only; direction must be clearly specified
	Total:	6	

Question	Answer	Marks	Guidance	
4	$\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[\frac{1}{2} \times 1.6 \times v^2\right]$	M1	For KE of either particle	
	Gain in KE = $\frac{1}{2} \times 0.8 \times v^2 + \frac{1}{2} \times 1.6 \times v^2$	A1	Total KE	
	[Gain in $PE_A = 0.8 g \times 0.5 \times \sin \theta$] or [Loss in $PE_B = 1.6 g \times 0.5$]	M1	For PE change of either particle (irrespective of sign)	
	Loss in PE = $1.6 g \times 0.5 - 0.8 g \times 0.5 \times 0.6$	A1	Change of PE	
	$[1.2v^2 = 8 - 2.4]$	M1	Energy equation originating from 4 terms	
	Speed is $2.16 ({\rm m \ s}^{-1})$	A1		
	Total:	6		
			SC for using Newton II equations and $v^2 = u^2 + 2as \pmod{2/6}$ $[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a] \rightarrow a = 4.67 \pmod{2}$ B1 $[v^2 = 2 \times \frac{14}{3} \times 0.5] \rightarrow \text{speed is } 2.16 \pmod{1}$ B1	
			Alternative method 1 for Question 4	
	$\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[0.8 g \times 0.5 \times \sin\theta\right]$	M1	For KE gain or PE gain of particle A	
	$\frac{1}{2} \times 0.8 \times v^2 + 0.8 g \times 0.5 \times 0.6$	A1	Total energy gain for particle A	
	$[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =] 8.53$	M1	Forms and solves Newton II equations to find tension <i>T</i>	
	$WD_T = \frac{128}{15} \times 0.5$	A1	Finds WD _{Tension}	
	$\left[\frac{1}{2} \times 0.8 \times v^2 + 0.8 g \times 0.5 \times 0.6 = \frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)	

9709/43

Question	Answer	Marks	Guidance	
4	Speed is $2.16 ({\rm m \ s}^{-1})$	A1		
	Total:	6		
			Alternative method 2 for Question 4	
	$\left[\frac{1}{2} \times 1.6 \times v^2\right]$ or $[1.6 g \times 0.5]$	M1	For KE gain or PE loss of particle <i>B</i>	
	$1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2$	A1	Energy change for particle <i>B</i>	
	$[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =]$ 8.53	M1	Forms and solves Newton II equations to find tension T	
	$WD_T = \frac{128}{15} \times 0.5$	A1	Finds WD _{Tension}	
	$1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2 = \frac{128}{15} \times 0.5]$	M1	Energy equation (3 terms)	
	Speed is $2.16 ({\rm m \ s}^{-1})$	A1		
	Total:	6		

Question	Answer	Marks	Guidance
5	$R = 3g\cos 20^{\circ}$	B1	Correct normal reaction stated or used
	$[F = 0.35 \times 3g\cos 20^\circ]$	M1	For use of $F = \mu R$
	$[P_1 + F = 3g\sin 20^\circ]$	M1	Attempted resolving equation for minimum case
	$P_1 = 0.394$ (AG)	A1	Correct given answer from correct work
	$[P_2 = F + 3g\sin 20^\circ]$	M1	Attempted resolving equation for maximum case
	$P_2 = 20.1 (\mathrm{N})$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
6(i)	$\left[\frac{P}{56} = 40 \times 56\right]$	M1	For equating $\frac{Power}{Velocity}$ to Resistance, or equivalent
	Power is 125 (kW)	A1	
	Total:	2	
6(ii)	Driving force is $\frac{125440}{32}$	B1ft	Follow through their power from (i)
	$\left[\frac{125440}{32} - 40 \times 32 = 1400a\right]$	M1	For 3-term Newton II equation
	$a = 1.89 (\mathrm{m s}^{-2})$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(iii)	$\left[\frac{60000}{50} + 1400g\sin\theta - 40 \times 50 = 0\right]$	M1	For 3-term Newton II equation
		A1	Correct equation
	$\left[\sin\theta^\circ = \frac{800}{14000}\right]$	M1	
	$\theta = 3.3$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(i)	$\left[\frac{\mathrm{d}v}{\mathrm{d}t} = 12 - 8t\right]$ or e.g. $\left[-4\left[(t - 1.5)^2 - 2.25\right]\right]$	M1	For attempted differentiation of $12t - 4t^2$ (or for alternative e.g. completing the square)
	[Maximum v when $t = 1.5 \Rightarrow v = 12 \times 1.5 - 4 \times 1.5^2$]	M1	For finding and using <i>t</i>
	Maximum velocity is $9 (m s^{-1})$	A1	
	Total:	3	
7(ii)	$\left[\frac{\mathrm{d}v}{\mathrm{d}t} = 12 - 8t = -4\right]$	M1	Finding acceleration for $0 \le t \le 2$ when t = 2
	Acceleration for $2 \le t \le 4$ is -4 No instantaneous change	A1	Both values correct, with correct statement
	Total:	2	

9709/43

Question	Answer	Marks	Guidance
7(iii)	v (ms ⁻¹)	B1	Quadratic shape (with max) for $0 \le t \le 2$
		B1	Line with negative gradient from $(2,)$ to $(4,0)$
		B1	All correct, smooth join and key values indicated
	Total:	3	
7(iv)	Area of triangle is 8	B1	(May be obtained by integrating $16 - 4t$ or use of <i>uvast</i>)
	$\left[\int (12t - 4t^2) \mathrm{d}t = 6t^2 - \frac{4}{3}t^3 \right]$	M1	Integration attempt for $0 \le t \le 2$
	$\left[6 \times 2^2 - \frac{4}{3} \times 2^3 - 6 \times 0^2 + \frac{4}{3} \times 0^3 \right]$	DM1	Use of limits 0 and 2; condone absence of zero terms
	Area under curve is $\frac{40}{3}$ or 13.3	A1	
	Distance travelled is $\frac{64}{3}$ (m) or 21.3 (m)	A1	
	Total:	5	