Question Number	Scheme	Marks
	SchemeTotal in School = $(15 \times 30) + 150 = 600$ random sample of $\frac{30}{600} \times 40$ = 2 from each of the 15 classes random sample of $\frac{150}{600} \times 40$ 	Marks B1 M1 A1 A1 B1 B1 B1 (7)

Question Number	Scheme		Ma	arks
2. (a)	E(R) = 20 + 10 = 30		B1	(1)
(b)	Var(R) = 4 + 0.84, = 4.84		M1, A1	(2)
(C)	R ~ N(30, 4.84)	(Use of normal with their (a),(b))	B1ft	(-)
	$P(28.9 < R < 32.64) = P(R < 32.64) - P(R < 28.9)$ $= P\left(Z < \frac{32.64 - 30}{2.2}\right) - P\left(Z < \frac{28.9 - 30}{2.2}\right)$	Stand their σ and μ	M1	
	= P(Z < 1.2) - P(Z < - 0.5)		A1, A1	
	= 0.8849 - (1 - 0.6915)	Correct area	M1	
	= 0.8849 - 0. 3085 = 0.5764	(accept AWRT 0.576)	A1	(6)
				9

3. (a)	$\widehat{\mu} = \frac{82 + 98 + 140 + 110 + 90 + 125 + 150 + 130 + 70 + 110}{10}$	M1	
	$\mu = 110.5$ 10	A1	
	$\hat{\sigma}^2 = \frac{1}{9} (128153 - 10 \times 110.5^2)$ 128153	B1	
	= 672.28 (AWRT 672)	M1 A1	(5)
(b)	95% confidence limits are (condone use of 5 instead of 25) (for 1.96)	M1 B1 A1√	
	110.5 $\pm 1.96 \times \frac{25}{\sqrt{10}}$		
	95% conf. lim. = AWRT(95, 126)	A1 A1	(5)
(c)	Number of intervals $= \frac{95}{100} \times 15$ = 14.25 (Allow 14 or 14.3 if method is clear)	M1 A1	
			(2)
			12

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Image: Note accept in the interval of the image: Note accept and the image: Note accept	\overline{Accept} Not accept Total Males 170 (180) 110 (100) 280 Females 280 (270) 140 (150) 420 Totals 450 250 700 Image: Totals 450 0.5556 100 Image: Totals 0.5556 100 1.0000 280 270 0.3704 0.6667 Image: Version of the state			ween gender ance are asso	and acceptance	2	B1
Males 170 (180) 110 (100) 280 Females 280 (270) 140 (150) 420 Totals 450 250 700 Kates Kates O E $(O - E)^2$ Expected W1 // Image: Totals 450 250 700 Kates M1 // Image: Totals 450 250 700 Kates M1 // Image: Totals 450 250 700 Kates M1 // Image: Totals 450 0.5556 M1 // M1 // M1 // Image: Totals 270 0.3704 M1 // M1 // M1 // Image: Totals 2.59 (Yates' 2.34) (Condone use of Yates') M1 // Image: Vertex is no association between a persons gender and their acceptance (of the offer M1 // M1 //	Males 170 (180) 110 (100) 280 Females 280 (270) 140 (150) 420 Totals 450 250 700 Values M1 A O E $(O - E)^2$ Expected Values M1 A O E $(O - E)^2$ Expected Values M1 A O E $(O - E)^2$ Expected Values M1 A D 100 0.5556 Expected Values M1 A 280 270 0.3704 Output M1 A M1 A $V = 1; (5\%) = 3.841$ (Condone use of Yates') M1 A M1 A $3.841 > 2.59$. There is insufficient evidence to reject Ho M1 A M1 A There is no association between a persons gender and their acceptance (of the offer M1 A	Males 170 (180) 110 (100) 280 Females 280 (270) 140 (150) 420 Values Totals 450 250 700 Values M1. O E $(O - E)^2$ E (O - E)^2 M1. Image: Interval and the Image: Interval and		r und uccept		ented		
Females 280 (270) 140 (150) 420 Label Control of the state of the sta	Females 280 (270) 140 (150) 420 Totals 450 250 700 O E $(O - E)^2$ Values 170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 $v = 1; (5\%) = 3.841$ (Condone use of Yates') 3.841 > 2.59. There is insufficient evidence to reject Ho M1 There is no association between a persons gender and their acceptance (of the offer M1	Females 280 (270) 140 (150) 420 Totals 450 250 700 O E $(O - E)^2$ Values 170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 $v = 1; (5\%) = 3.841$ (Condone use of Yates') 3.841 > 2.59. There is insufficient evidence to reject Ho M1 There is no association between a persons gender and their acceptance (of the offer M1		Accept	Not accept	Total		
Permares 250 (270) 140 (130) 420 Values Totals 450 250 700 Values O E $(O - E)^2$ E $Values$ 170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 $V = 1; (5\%) = 3.841$ (Condone use of Yates') M1 A $S.841 > 2.59$. There is insufficient evidence to reject Ho M1 A_1	Permates 280 (270) 140 (130) 420 Values Totals 450 250 700 Values O E $(O - E)^2$ E $(O - E)^2$ E 170 180 0.5556 100 1000 1.0000 280 270 0.3704 140 150 0.6667 $v = 1; (5\%) = 3.841$ (Condone use of Yates') M1 A B1; 1 3.841 > 2.59. There is insufficient evidence to reject Ho M1 $A_1\sqrt{A_1}$ A1 $\sqrt{A_1}$	Permates 280 (270) 140 (130) 420 Values Totals 450 250 700 Values O E $(O - E)^2$ E $(O - E)^2$ E 170 180 0.5556 110 1000 1.0000 280 270 0.3704 140 150 0.6667 $V = 1; (5\%) = 3.841$ (Condone use of Yates') M1 B1; 1 3.841 > 2.59. There is insufficient evidence to reject Ho M1 A1 $$	Males			280	Expected	M1 A
Totals 450 250 700 O E $(O - E)^2$ E 170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 $v = 1; (5\%) = 3.841$ (Condone use of Yates') 3.841 > 2.59. There is insufficient evidence to reject Ho M1 There is no association between a persons gender and their acceptance (of the offer M1	Iotals 450 250 700 Iotals 450 250 700 Iotals 450 250 700 Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals Iotals	Iotals 450 250 700 Iotals 450 250 700 Iotals 450 250 700 Iotals Iota	Females	280 (270)	140 (150)	420		
$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1 $$	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brev}})	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brack}})	Totals	450	250	700	Values	
$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1 $$	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brev}})	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brack}})						
$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1 $$	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brev}})	$\frac{(O-E)}{E}$ $\frac{170 180 0.5556}{110 100 1.0000}$ $\frac{280 270 0.3704}{140 150 0.6667}$ $\sum \frac{(O-E)^2}{E} = 2.59 (Yates' 2.34) \qquad (Condone use of Yates')$ $v = 1; (5\%) = 3.841$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho}$ There is no association between a persons gender and their acceptance (of the offer A1\sqrt{A1\sqrt{brack}})	0		E	$(\mathbf{O} \mathbf{F})^2$		
170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 $\Sigma \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34) (Condone use of Yates') $v = 1; (5\%) = 3.841$ M1 $3.841 > 2.59$. There is insufficient evidence to reject Ho M1 There is no association between a persons gender and their acceptance (of the offer M1	170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 M1 μ $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34) $\nu = 1; (5\%) = 3.841$ 3.841 > 2.59. There is insufficient evidence to reject Ho There is no association between a persons gender and their acceptance (of the offer	170 180 0.5556 110 100 1.0000 280 270 0.3704 140 150 0.6667 M1 \cdot $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34) $v = 1; (5\%) = 3.841$ 3.841 > 2.59. There is insufficient evidence to reject Ho There is no association between a persons gender and their acceptance (of the offer	Ũ		-	$\frac{(O-E)}{E}$		
110 100 1.0000 280 270 0.3704 140 150 0.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ B1; I $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1	110 100 1.0000 280 270 0.3704 140 150 0.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ B1; I $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1	110 100 1.0000 280 270 0.3704 140 150 0.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ B1; T $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1	170		180	0.5556		
1401500.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ M1 A3.841 > 2.59. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1	1401500.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ B1; I $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1	1401500.6667 $\sum \frac{(O-E)^2}{E} = 2.59$ (Yates' 2.34)(Condone use of Yates') $v = 1; (5\%) = 3.841$ M1 $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerM1						
$\sum \frac{(O-E)^2}{E} = 2.59 (\text{Yates' } 2.34) \qquad (\text{Condone use of Yates'}) \qquad \text{M1} \\ \nu = 1; (5\%) = 3.841 \qquad \text{B1; I} \\ 3.841 > 2.59. \text{ There is insufficient evidence to reject Ho} \qquad \text{M1} \\ There is no association between a persons gender and their acceptance (of the offer A1$	$\sum \frac{(O-E)^2}{E} = 2.59 (\text{Yates' } 2.34) \qquad (\text{Condone use of Yates'}) \qquad \text{M1}$ $v = 1; (5\%) = 3.841 \qquad \text{B1}; 1$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho} \qquad \text{M1}$ There is no association between a persons gender and their acceptance (of the offer $A1$	$\sum \frac{(O-E)^2}{E} = 2.59 (\text{Yates' } 2.34) \qquad (\text{Condone use of Yates'}) \qquad \text{M1}$ $v = 1; (5\%) = 3.841 \qquad \text{B1}; 1$ $3.841 > 2.59. \text{ There is insufficient evidence to reject Ho} \qquad \text{M1}$ There is no association between a persons gender and their acceptance (of the offer $A1\sqrt{1}$						
v = 1; (5%) = 3.841B1; I $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerA1 $$	v = 1; (5%) = 3.841B1; I $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerA1 $$	v = 1; (5%) = 3.841B1; 1 $3.841 > 2.59$. There is insufficient evidence to reject HoM1There is no association between a persons gender and their acceptance (of the offerA1 $$	140		150	0.6667		
			There is no	o association				

5. (a)	μ_b = mean mark of boys, μ_g = mean mark of girls.			
	$ \begin{aligned} \mathbf{H}_0 &: \mu_b &= \mu_g \\ \mathbf{H}_1 &: \mu_b &\neq \mu_g \end{aligned} $	both	B1	
	$z = \frac{53 - 50}{\sqrt{\frac{144}{80} + \frac{144}{80}}}$		M1 A1	
	= 1.58 Critical region $z \ge 1.96$ 1.58 < 1.96 insufficient evidence to reject Ho. No diff. between mean scores of boys and girls.		A1 B1 M1 A1	(7)
(b)	$ \begin{array}{l} \mathrm{H}_{0}: \mu_{b} \ = \mu_{g} \\ \mathrm{H}_{1}: \mu_{b} \ < \mu_{g} \end{array} $		B1	
	$z = -\frac{62 - 59}{\sqrt{\frac{36}{80} + \frac{36}{80}}}$		M1	
	= 3.16		A1	
	Critical region $z \ge 1.6449$ (accept 1.645)		B1	
	3.16 > 1.6449 sufficient evidence to reject H ₀ . the mean mark for boys is less than the mean mark of the girls.		A1	
				(5)
(c)	Girls have improved more than boys or girls performed better than boys after 1 year		B1	
				(1)
				13

6. (a)	r = 27.07, s = 18.04,	M1 A1 B1	
	t = 0.11 using tables or 0.12 using totals	B1 ft	(4)
(b)	Ho : A Poisson model Po(2) is a suitable model.bothH1 : A Poisson model Po(2) is not a suitable model.both	B1	
	Amalgamate data	M1	
	$\sum \frac{(O-E)^2}{E} = 3.28$ (awrt)	M1 A1	
		B1	
	v = 6 - 1 = 5 $\chi_5^2 (5\%) = 11.070$ (follow through their degrees of freedom)	B1ft	
	3.25 < 11.070 There is insufficient evidence to reject H_0 , <u>Po(2) is a suitable model.</u>	A1ft	(7)
(c)	The expected values, and hence $\sum \frac{(O-E)^2}{E}$ would be different,	B1 B1	(2)
	and the degrees of freedom would be 1 less.	2.	(-)
			13

			to be norn	nally distrib	uted			B1	
	20-29	30-39	40-49	50-59	60-69	70+]		
Rank x	5	6	4	3	1	2	_	M1 A1	
Rank y	6	5	4	1	3	2	_		
<u>d</u>	1	1	0	2	2	0		dM1 (dep	
d^2	1	1	0	4	4	0		on rankir attempt)	ng
$\sum d^2 = 1$	0					(follow th	nrough their rankings)	A1 ft	
$s_s = 1 - \frac{6}{n}$	$\frac{0}{6\sum d^2} d^2 = \frac{1}{(n^2 - 1)} = \frac{1}{2}$	$1 - \frac{60}{210} =$	= 0.714			$\left(\frac{5}{7} \text{ or } a\right)$	awrt 0.714)	M1 A1	
$H_0: \rho = 0$								B1	
$_1: \rho \neq 0$ (B1	
		lue = 0.885	57 (or 0.828	6)				B1√ M1	
.714 < 0.8 lo evidence	e to reject I	H_0 ;	on dootho fr		annincic a	nd lung can	oor	A1	
				omprieum	JUUI IIUSIS di	nu lung can			
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12