Mark Scheme 4723 June 2006

4723

Mark Scheme

June 2006

1	Differe	intiate to obtain $k(4x+1)^{-\frac{1}{2}}$	M1		any non-zero constant k
	Obtain Obtain Attemp	$2(4x+1)^{-\frac{1}{2}}$ $\frac{2}{3}$ for value of first derivative of equation of tangent through (2, 3)	A1 A1 M1		or equiv, perhaps unsimplified or unsimplified equiv using numerical value of first
				_	derivative provided derivative is of form $k'(4x + 1)^n$
	Obtain	$y = \frac{2}{3}x + \frac{3}{3}$ or $2x - 3y + 5 = 0$	A1	5	or equiv involving 3 terms
2	<u>Either</u> :	Attempt to square both sides Obtain $3x^2 - 14x + 8 = 0$ Obtain correct values $\frac{2}{3}$ and 4	M1 A1 A1		producing 3 terms on each side or inequality involving < or >
		Attempt valid method for solving inequality Obtain $\frac{2}{3} \neq X \neq A$	M1	E	implied by correct answer or plausible incorrect answer
		Obtain $\frac{1}{3} < x < 4$	AI	5	allow ≤ signs
	<u>Or</u> :	Attempt solution of two linear equations or inequalities	M 1		one eqn with signs of 2 <i>x</i> and <i>x</i> the same, second eqn with signs different
		Obtain value $\frac{2}{3}$	A1		
		Obtain value 4 Attempt valid method for solving inequality	В1 М1		implied by correct answer or plausible incorrect answer
		Obtain $\frac{2}{3} < x < 4$	A1	(5) or correctly expressed equiv; allow ≤ signs
3 (i)	Attempt evaluation of cubic expression at 2 and 3 Obtain –11 and 31 Conclude by noting change of sign		M1 A1		
			A1 ⁻	√ 3	or equiv; following any calculated values provided negative then positive
(ii)	Obtain correct first iterate Attempt correct process to obtain at least 3 iterate Obtain 2.34		B1 5 M1 A1	3	using x_1 value such that $2 \le x_1 \le 3$ using any starting value now answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4723		Mark Scheme				June 2006	
4	(i)	State	$\ln y = (x - 1)\ln 5$	B1		whether following $\ln y = \ln 5^{x-1}$ or not; brackets needed	
		Obtain	$x = 1 + \frac{\ln y}{\ln 5}$	B1	2	AG; correct working needed;	
			in 5			missing brackets maybe now implied	
	(ii)	Differe	Differentiate to obtain single term of form $\frac{k}{y}$ M1 any c		co	onstant <i>k</i>	
		Obtain	$\frac{1}{v \ln 5}$	A1	2	or equiv involving y	
	(iii)	Substit	ute for y and attempt reciprocal	M1		or equiv method for finding derivative without using part (ii)	
		Obtain	25 ln 5	A1	2	or exact equiv	
5	(i)	State s	$\sin 2\theta = 2\sin\theta\cos\theta$	B1	1	or equiv; any letter acceptable here (and in parts (ii) and (iii))	
	(ii)	Attemp	t to find exact value of $\cos \alpha$	M 1		using identity attempt or right- angled triangle	
		Obtain	$\frac{1}{4}\sqrt{15}$	A1		or exact equiv	
		Substit	ute to confirm $\frac{1}{8}\sqrt{15}$	A1	3	AG	
((iii)	State or imply sec $\beta = \frac{1}{\cos \beta}$		B1			
		Use ide Obtain	entity to produce equation involving sin β sin β = 0.3 and hence 17.5	M1 A1	3	and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5	
6	(i)	<u>Either</u> :	Obtain $f(-3) = -7$ Show correct process for compn of function Obtain -47	B1 sM1 A1	3	maybe implied	
		<u>Or</u> :	Show correct process for compn of function Obtain $2 - (2 - x^2)^2$ Obtain -47	sM1 A1 A1	(3	using algebraic approach or equiv 5)	
	(ii)	Attemp Obtain	t correct process for finding inverse either one of $x = \pm \sqrt{2-y}$ or both	M1 A1		as far as $x = \dots$ or equiv or equiv perhaps involving x	
		Obtain correct $-\sqrt{2-x}$		A1	3	or equiv; in terms of <i>x</i> now	
((iii)	Draw graph showing attempt at reflection in $y = x$ Draw (more or less) correct graph		M1 A1		with end-point on <i>x</i> -axis and no	
		Indicate	e coordinates 2 and $-\sqrt{2}$	A1	3	accept –1.4 in place of $-\sqrt{2}$	
7	(a)	a) Obtain integral of form $k(4x-1)^{-1}$		M1		any non-zero constant k	

4723	Mark Scheme	June 2006
	Obtain $-\frac{1}{2}(4x-1)^{-1}$	A1 or equiv; allow + c
	Substitute limits and attempt evaluation	M1 for any expression
		of form $k'(4x-1)^n$
	Obtain $\frac{2}{21}$	A1 4 or exact equiv
(b)	Integrate to obtain $\ln x$ Substitute limits to obtain $\ln 2a - \ln a$ Subtract integral attempt from attempt at area	B1 B1
	of appropriate rectangle	M1 or equiv
	Obtain 1 – (In 2 <i>a</i> – In <i>a</i>)	A1 or equiv
	Show at least one relevant logarithm property	M1 at any stage of solution
	Obtain 1 – In 2 and hence $\ln(\frac{1}{2}e)$	A1 6 AG; full detail required
8 (i)	State $R = 13$	B1 or equiv
• (-)	State at least one equation of form $R \cos \alpha = k$,	
	$R\sin \alpha = k', \tan \alpha = k''$	M1 or equiv; allow sin / cos
		muddles; implied by correct α
	Obtain 67.4	A1 3 allow 67 or greater accuracy
(ii)	Refer to translation and stretch	M1 in either order; allow here equiv terms such as 'move', 'shift'; with both transformations
	State translation in positive x direction by 67.4	$\Delta 1_{3}$ or equiv: following their α : using
		correct terminology now
	State stretch in y direction by factor 13	A1√ 3 or equiv; following their <i>R</i> ; using correct terminology now
(iii)	Attempt value of $\cos^{-1}(2 \div R)$	M1
	Obtain 81.15	A1 $$ following their <i>R</i> ; accept 81
	Obtain 148.5 as one solution	A1 accept 148.5 or 148.6 or value rounding to either of these
	Add their α value to second value	-
	correctly attempted	M1
	Obtain 346.2	A1 5 accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

Mark Scheme

June 2006

4723

9 (i) Attempt to express x in terms of y Obtain $x = e^{\frac{1}{2}y} + 1$ State or imply volume involves $\int \pi x^2$ Attempt to express x^2 in terms of y**Obtain** $k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$ Integrate to obtain $k(e^{y} + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and p **Obtain** $\pi(e^{p} + 4e^{\frac{1}{2}p} + p - 5)$ (ii) State or imply $\frac{dp}{dt} = 0.2$ E Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of V E Attempt multiplication of values or expressions for $\frac{\mathrm{d}p}{\mathrm{d}t}$ and $\frac{\mathrm{d}V}{\mathrm{d}p}$ Ν **Obtain** $0.2\pi(e^4 + 2e^2 + 1)$

Obtain 44

*M1	obtaining two terms		
A1	or equiv		
B1			
*M1	dep *M ; expanding to produce at least 3 terms		
A1	any constant <i>k</i> including 1; allow if dy absent		
A1			
M1	<pre>dep *M *M; evidence of use of 0 needed</pre>		
A1 8	AG; necessary detail required		
B1	maybe implied by use of 0.2 in product		
B1			
M1			
A1 √	following their $\frac{\mathrm{d}V}{\mathrm{d}p}$ expression		

A1 5 or greater accuracy

4723

Mark Scheme

June 2006