PH1

(Questic	n	Marking details	Marks Available
1	(a)	(i) (ii)	[For a metallic conductor] the potential difference and current are [directly] proportional/ I α V (1), provided the temperature remains constant / all physical factors remain constant (1) V = IR only no marks It is constant / stays the same /increases as the temperature increases	2 1
	(b)	(i)	$A = 1.5(3) \times 10^{-8} [\text{m}^2](1)$ $R = \frac{\rho l}{A} = \frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}} (1) = 199 [\Omega] (1)$	2
		(ii)	$\frac{230^2}{200}$ = 265 [W] allow e.c.f. from (b)(i)	3
		(iii) (iv)	$\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2}(1)$ $R_2 = 100 [\Omega] (1)$ $R_2 (1) $ either reference to $\frac{V^2}{R}$ so lower R / same V across lower R	3
		(v)	or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_2(1)$	2
			$\frac{230}{66.7}$ = 3.5 [A] allow e.c.f. from (b)(iii)	1
			Question 1 total	[13]
2	(a)	(i)	 Diagram to include Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning (1) Method of heating shown (1) 	
		(ii)	• Method of recording temperature shown (1) Linear [or approximately linear] graph with positive gradient (1) and positive intercept on <i>R</i> axis (1).	3 2
	(b)	(i) (ii)	Conducting / delocalised / free electrons (1) collide (1) with metal lattice / atoms / ions (1) [not with other free electrons] The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of	3
			collisions/ collisions more often / greater frequency of collisions (1) [not harder].	2
			Question 2 total	[10]

(Questic	on	Marking details	Marks Available
3	(a)	(i) (ii)	Rate of change of velocity or $\frac{v-u}{t}$ or change in velocity / time taken $(u=0)$ (1) [or by impl.] Acceleration = $\frac{6.0}{0.8}$ = 7.5 m s ⁻² (1) UNIT mark	1
	(b)		After release there are no [horizontal] forces acting [on the trolley] (1) so it travels with constant speed [to the left] (1). When Nigel catches it there is a force on the trolley to the right / towards Nigel (1) which causes the trolley to decelerate/ slow down/ stop moving [to	2
			rest] (1) Question 3 total	4 [7]
4	(a) (b)		$E_{\rm P} = (7.0 \times 10^6 \times 1000)(1) \times 9.81 \times 600 \ (1) \ [= 4.1 \times 10^{13}]$ $1^{\rm st} \ \text{mark} - \text{use of density equation to get } 7.0 \times 10^9 \ \text{kg}$ $2^{\rm nd} \ \text{mark} - \text{use of } mgh$ Energy available per second = $0.9 \times 4.1 \times 10^{13} \ [= 3.6 \times 10^{13}] \ \text{J} \ (1)$ $\text{allow e.c.f. from (a)}$ $\text{Time} = \frac{3.6 \times 10^{13}}{6 \times 300 \times 10^6 \ (1)} \ [= 2 \times 10^4 \ [\text{s}] \ / \ 5.6 \ [\text{hour}]] \ (1)$	2
	(c)	(i) (ii) (iii)	$\frac{7.0 \times 10^{9}}{2 \times 10^{4} \text{ e.c.f.}} = 3.5 \times 10^{5} \text{ [kg s}^{-1} \text{] allow e.c.f from (a) and (b)}$ $E_{k} \text{ per second } [= \frac{1}{2} \times 3.5 \times 10^{5} \times 20^{2} \text{]}$ $= 7 \times 10^{7} \text{ [J s}^{-1} \text{] allow e.c.f from (c)(i)}$ Energy wasted per second = $\frac{10\% \times 4 \times 10^{13} \text{ J}}{2 \times 10^{4} \text{ s}} \text{ (1) allow e.c.f. from (a)}$	1
		(iv)	and (b) [or equiv, or by impl.] = 2×10^8 [W] (1) % lost in $E_k = \frac{7 \times 10^7}{2 \times 10^8}$ [e.c.f. on (ii) and (iii)] = 35%	2
		(v)	Any sensible answer, e.g. [k.e. in] water turbulence, [work against] friction in turbines, drag/friction between water and pipes not just heat or sound or refilling the high level reservoir.	1
			Question 4 Total	[11]

Question			Marking details	Marks Available
5	(a)	(i) (ii) (iii)	Electron Negative charges repelled [by rod] (1) and move from A to B/ to the right (1) leaving A with a net positive charge (1) Diagram with A shown as positive and B as negative (1) and the	3
			charges shown on the sides of the sphere which are nearly touching.(1)	2
	(b)	(i) (ii)	$[1.6 \times 10^{-19} \times 300 \times 10^{9}] = 4.8 \times 10^{-8} \text{ C UNIT mark}$ 4.8×10^{-8}	1
			$I = \frac{4.8 \times 10^{-8}}{20 \times 10^{-12}} (1) = 2.4 \times 10^{3} [A] (1) \text{ allow e.c.f from (b)(i)}$	2
			Question 5 Total	[9]
6	(a)	(i)	[Total] distance time not rate of change of distance	1
		(ii)	displacement time not rate of change of displacement	1
	(b)	(i)	$\frac{6.0}{25} = 0.24 [\text{ m s}^{-1}]$	1
		(ii)	$\frac{\sqrt{3.5^2 + 2.5^2}(1)}{25} = 0.17 \text{ [m s}^{-1}](1)$	2
	(c)	(i)	E = IVt used [i.e. relevant numbers substituted] (1) Energy stored = 2.5 × (60 × 60) or 1.25 x 2 x (60 x 60) (1) × 15.0 i.e. conversion to seconds	
		(ii)	$E = 1.35 \times 10^5$ [J] or 37.5 Watt hours (1) Watt hours unit needed	3
			$\frac{1.35 \times 10^{3}}{30} (1) = 4.5 \times 10^{3} \text{ s } [= 1\frac{1}{4} \text{ hour}] (1) \text{ allow e.c.f. from (c)(i)}$	2
	(d)	(i)	Power = $\frac{\text{Work [or energy]}}{\text{time}} = \frac{F \times d}{t}$ Identification of work as $F \times d$ in context of power equation (1)	
		(ii)	Identification of work as $F \times d$ in context of power equation (1) Identification of velocity as d/t (1) $9 = F \times 0.24$ (1) [or by impl. – use of 0.24 m s ⁻¹ , i.e. identification of relevant v] allow e.c.f. from (b)(i)	2
			F = 37.5 [N] (1)	2
			Question 6 Total	[14]

Question			Marking details	Marks Available
7	(a)		Relevant pairs of values chosen (1) [e.g. $10 \text{ m s}^{-1} \rightarrow 8 \text{ m}$ and $20 \text{ m s}^{-1} \rightarrow 32 \text{ m}$] Method / strategy, e.g compare $\frac{\text{distance}}{\text{speed}^2}$ for the pairs of values. (1) Conclusion clearly linked to calculation (1) Allow e.c.f for values of pairs if marking points 2 and 3 completed correctly.	3
	(b)	(i) (ii)	Identification of relevant equation: e.g. $v^2 = u^2 + 2ax$ (1) Identification of x = 18 m (1) deceleration = 6.3 [m s ⁻²] or a = -6.3 [m s ⁻²] (1) $F = 800 \times 6.3 = 5000$ [N] allow e.c.f. from (b)(i)	3 1
	(c)		Reaction time is independent of speed / doesn't change (1) Then $v \propto d$ [from $d = vt$] (1)	2
	(d)	(i) (ii)	21 + 72 = 93 [m] No change to thinking distance (1) [Reduced acc/deceleration would] increase braking distance (1)	1 2
	(e)		Time required = $\frac{\text{total distance}}{\text{speed}} = \frac{10}{50} [= 0.2 \text{ hour}] (1)$ Time for first 6.0 km = $\frac{6.0}{80} [= 0.075 \text{ hour}] (1)$ remaining time = $0.2 - 0.075 = 0.125 \text{ hour} (1)$	
			Speed for remaining 4 km = $\frac{4}{0.125}$ = 32 [km/h] or 8.9 [m s ⁻¹] (1)	4
			Question 7 Total	[16]