Mark Scheme 4722 January 2007

4722 Mark Scheme Jan 2007

1 15+19 $d = 72$ Hence $d = 3$ $S_n = {}^{100}/{}_2 \{(2 \times 15) + (99 \times 3)\}$ = 16350	M1 A1 M1 A1 4	Attempt to find d , from $a + (n - 1)d$ or $a + nd$ Obtain $d = 3$ Use correct formula for sum of n terms Obtain 16350
	4	
2 (i) $46 \times \frac{\pi}{180} = 0.802 / 0.803$	M1	Attempt to convert to radians using π and 180 (or 2π &
360)	A1 2	Obtain 0.802 / 0.803, or better
(ii) $8 \times 0.803 = 6.4 \text{ cm}$	B1 1	State 6.4, or better
(iii) $\frac{1}{2} \times 8^2 \times 0.803 = 25.6 / 25.7 \text{ cm}^2$	M1	Attempt area of sector using $\frac{1}{2}r^2\theta$ or $r^2\theta$, with θ in
radians	A1 2	Obtain 25.6 / 25.7, or better
	5	
3 (i) $\int (4x-5)dx = 2x^2 - 5x + c$	M1	Obtain at least one correct term
•	A1 2	Obtain at least $2x^2 - 5x$
(ii) $y = 2x^2 - 5x + c$ $7 = 2 \times 3^2 - 5 \times 3 + c \Rightarrow c = 4$	B1√ M1	State or imply $y =$ their integral from (i) Use (3,7) to evaluate c
So equation is $y = 2x^2 - 5x + 4$	A1 3	Correct final equation
	5	
4 (i) area = $\frac{1}{2} \times 5\sqrt{2} \times 8 \times \sin 60^{\circ}$	B1	State or imply that $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ or exact equiv
$= \frac{1}{2} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	M1	Use $\frac{1}{2}ac\sin B$
$=10\sqrt{6}$	A1 3	Obtain $10\sqrt{6}$ only, from working in surds
(ii) $AC^2 = (5\sqrt{2})^2 + 8^2 - 2 \times 5\sqrt{2} \times 8 \times \cos 60^\circ$	M1	Attempt to use the correct cosine formula
AC = 7.58 cm	A1 A1 3	Correct unsimplified expression for AC^2 Obtain $AC = 7.58$, or better
	6	
5 (a) (i) $\log_3 \frac{4x+7}{x}$	B1 1	Correct single logarithm, as final answer, from correct working only
$\log_3 \frac{4x+7}{x} = 2$		
$\frac{4x+7}{x} = 9$	B1	State or imply $2 = \log_3 9$
4x+7=9x $x=1.4$	M1 A1 3	Attempt to solve equation of form $f(x) = 8$ or 9 Obtain $x = 1.4$, or exact equiv
(b) $\int_{3}^{9} \log_{10} x dx \approx \frac{1}{2} \times 3 \times (\log_{10} 3 + 2\log_{10} 6 + \log_{10} 9)$	9) B1	State, or imply, the 3 correct <i>y</i> -values only
³ ≈ 4.48	M1 A1	Attempt to use correct trapezium rule Obtain correct unsimplified expression Obtain 4.48 or better
	A1 4	Obtain 4.48, or better
	8	

4722 Mark Scheme January 2007

6		$(1+4x)^7 = 1+28x+336x^2+2240x^3$ 28a + 1008 = 1001 Hence $a = -\frac{1}{4}$	B1 M1 A1 A1 M1 A1√ A1	4	Obtain $1 + 28x$ Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4x$ Obtain $336x^2$ Obtain $2240x^3$ Multiply together two relevant pairs of terms Obtain $28a + 1008 = 1001$ Obtain $a = -\frac{1}{4}$
			AI	7	Obtain <i>u</i> = - 74
7	(i)	(a) •	B1 B1	2	Correct shape of $k\cos x$ graph (90, 0), (270, 0) and (0, 2) stated or implied
		(b) $\cos x = 0.4$ $x = 66.4^{\circ}, 294^{\circ}$	M1 A1 A1√	3	Divide by 2, and attempt to solve for x Correct answer of 66.4° / 1.16 rads Second correct answer only, in degrees, following their x
	(ii)	$\tan x = 2$ $x = 63.4^{\circ}, -117^{\circ}$	M1 A1 A1√	3	Use of $\tan x = \frac{\sin x}{\cos x}$ (or square and use $\sin^2 x + \cos^2 x = 1$) Correct answer of 63.4° / 1.56 rads Second correct answer only, in degrees, following their x
				8	
8	(i)	-8 - 36 - 14 + 33 = -25	M1 A1	2	Substitute $x = -2$, or attempt complete division by $(x + 2)$ Obtain -25 , as final answer
	(ii)	27 - 81 + 21 + 33 = 0 A.G.	B1	1	Confirm $f(3) = 0$, or equiv using division
	(iii)	x = 3 f(x) = (x - 3)(x ² - 6x - 11)	B1 M1 A1 A1		State $x = 3$ as a root at any point Attempt complete division by $(x - 3)$ or equiv Obtain $x^2 - 6x + k$ Obtain completely correct quotient
		$x = \frac{6 \pm \sqrt{36 + 44}}{2}$	M1		Attempt use of quadratic formula, or equiv, to find roots
		$= 3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$	A1	6	Obtain $3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$
				9	
9	(i)	$u_5 = 1.5 \times 1.02^4$	M1		Use $1.5r^4$, or find u_2 , u_3 , u_4
		$= 1.624 \text{ tonnes} \mathbf{A.G.}$	A1	2	Obtain 1.624 or better
	(ii)	$\frac{1.5(1.02^{N} - 1)}{1.02 - 1} \le 39$	M1		Use correct formula for S_N
		$(1.02^{N} - 1) \le (39 \times 0.02 \div 1.5)$ $(1.02^{N} - 1) \le 0.52$	A1 M1		Correct unsimplified expressions for S_N Link S_N to 39 and attempt to rearrange
		$(1.02^{\circ} - 1) \le 0.32^{\circ}$ Hence $1.02^{\circ} \le 1.52$	A1	4	Obtain given inequality convincingly, with no sign errors
	(iii)	$\log 1.02^{N} \le \log 1.52$ $N \log 1.02 \le \log 1.52$ $N \le 21.144$ N = 21 trips	M1 A1 M1 A1	4	Introduce logarithms on both sides and use $\log a^b = b \log$ Obtain $N \log 1.02 \le \log 1.52$ (ignore linking sign) Attempt to solve for N Obtain $N = 21$ only
			[10	

4722 Mark Scheme January 2007

10	(i)	$0 = 1 - \frac{3}{\sqrt{9}}$	B1	1	Verification of (9, 0), with at least one step shown
	(ii)	$\int_{0}^{a} 1 - 3x^{-\frac{1}{2}} dx = \left[x - 6\sqrt{x} \right]_{0}^{a}$	M1		Attempt integration – increase in power for at least 1 term
		$= (a - 6\sqrt{a}) - (9 - 6\sqrt{9})$ $= a - 6\sqrt{a} + 9$	A1 A1 M1 A1		For second term of form $kx^{1/2}$ For correct integral Attempt $F(a) - F(9)$ Obtain $a - 6\sqrt{a} + 9$
		$a - 6\sqrt{a} + 9 = 4$ $a - 6\sqrt{a} + 5 = 0$ $(\sqrt{a} - 1)(\sqrt{a} - 5) = 0$	M1 M1		Equate expression for area to 4 Attempt to solve 'disguised' quadratic
		$\sqrt{a} = 1, \sqrt{a} = 5$ $a = 1, a = 25$ but $a > 9$, so $a = 25$	A1	9	Obtain at least $\sqrt{a} = 5$ Obtain $a = 25$ only
		out a > 2, 50 a -25		10	30mm u = 25 om;