Mark Scheme 4728 January 2007

4728			Scheme J	an 2007		
1	(i)	Net force on trailer is $+/-(700 - R_T)$	B1			
			M1		For applying Newton's second law to the traile with 2 terms on LHS (no vertical forces)	er
		$700 - R_T = 600 \ge 0.8$ Resistance is 220N	A1ft A1	4	ft cv (+/-(700 - R_T))	
	(ii)		M1		For applying Newton's second law to the car of whole, with a =+/- 0.8 (no vertical forces)	or to the
		$2100 - 700 - R_{\rm C} = 1100 \ge 0.8$	A1ft			
		or $2100 - (R_{\rm C} + 220) = (1100 + 600)x$			ft cv(220)	
		0.8 Resistance is 520N	A1	3		
2	(i)		M1		For resolving forces vertically	
		15 x 0.28 and 11x 0.8 Y= 15x0.28 + 11x0.8 - 13	A1 A1ft		Allow use of = 16.3 and =53.1 Ft cv(15 x 0.28 and 11x 0.8)	
		Component is zero	A1	4	SR 15sin + 11sin $-13 = 0$ gets M1A0A1ftA	40
	(ii)		M1		For resolving forces horizontally	
		X = 15 x 0.96 – 11 x 0.6	A1		Allow use of $= 16.3$ and $= 53.1$	
		Magnitude is 7.8N	A1	3	Accept 7.79, -7.8	
	(iii)	Direction is that of the (+ve) x -axis	B1	1	Do not allow horizontal, 90° from vertical. Do not award if = 16.3 and =53.1	
					have been used.	
3	(i)	T = 0.3g	B1		At particle (or $0.3g - T = 0.3a$)	
		$\mathbf{F} = \mathbf{T}$	B1		Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)	
		R = 0.4g	B1			
			M1		For using $F = \mu R$	
	(;;)	Coefficient is 0.75	Al M1	5	For resolving 3 relevant forces on P horizonta	11 ₁₂ 0–0
	(11)	X = 0.3g + 0.3g	Alft		For resolving 5 relevant forces on B horizonta Ft X = $0.3g + cv(\mu)$	11y, a–0
					cv(R)	
		X = 5.88N	A1	3		

4728

Mark Scheme

Jan 2007

4	(i)	Momentum before collision = +/-(0.8 x 4 - 0.6 x 2) Momentum after collision = +/-0.8v _L + 0.6 x 2	B1 B1 M1		Or momentum change L $0.8x4 + 0.8v_L$ Accept inclusion of g in both terms Momentum change N 0.6x2 + 0.6x2 Accept inclusion of g in both terms For using the principle of conservation of momentum even if g is included throughout
		Speed is 1 ms ⁻¹	A1	4	Accept -1 from correct work (g not used).
	(ii)(a)	0.6x2 - 0.7x0.5 Total is 0.85kgms ⁻¹ <u>Total</u> momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum.	M1 A1 DM 1		Must be a difference. SR $0.6x1 - 0.7x0.5$ M1 Must be positive Or $0.6v + 0.7w$ is positive, confirming that the momentum is shared between two particles. No reference need be made to the physically impossible scenario where M and N both might continue in their original directions.
		direction.	AI	4	
	(ii)(b)	0.6x2 - 0.7x0.5 (= 0.85) = 0.7v	A1ft		ft cv (0.85). Award M1 if not given in ii(a).
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work
5	(i)	$1.8t^2/2$ (+C)	M*1		For using $v = \int a dt$
	(ii)	(t = 0, v = 0) C = 0 Expression is $1.8t^2/2$	B1 A1 M1	3	May be awarded in (ii). Accept c written and deleted. also for $1.8t^2 + c$
		0.9t ³ /3 (+K) 0.3 x 64	A1 M1		SR Award B1 for (s = 0, t = 0) K = 0 if not already given in (i), or +K included and limits used. For using limits 0 to 4 (or equivalent)
	(iii)	19.2m AG $u = 0.9 \times 4^2$	A1 D* M1	4	For using 'u' = $v(4)$
		$s = 14.4 \text{ x } 3 + \frac{1}{2} 7.2 \text{ x}$ 3^2	M1 A1		For using $s = ut + \frac{1}{2} x7.2t^2$ with non-zero u (s = 75.6)
		19.2 + 75.6 Displacement is 94.8m OR	M1 A1	5	For adding distances for the two distinct stages
		$v = \int 7.2 dt$	D* M1		For finding v(4)
		t = 0, v = 14.4, c = 14.4	IVI I		Nb Using t=4, v=14.4 gives $c = -14.4$
		$s = \int 7.2t + 14.4dt$			$s = \int 7.2t - 14.4dt$
		t = 0, s = 0, k = 0			Integration and finding integration constant. Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2
			M1		Substituting t = 3 (OR 7 into s = $3.6t^2 - 14.4t + 19.2$)
		$s=3.6x3^2+14.4x3$	A1 M1		(S=73.0) (OR $S=5.0$ X7 - 14.4X7 + 19.2) Adding two distinct stages OR
		19.2 + 75.6 = 94.8 Displacement is 94.8m	A1		$s = 3.6 x7^2 - 14.4x7 + 19.2 = 94.8$ final M1A1
-			Deter		
6	(i)	$\frac{1}{2} 25v_{m} = 8 \text{ or}$ $\frac{1}{2}Tv_{m} + \frac{1}{2}(25 - T)v_{m} =$	B*1		Do not accept solution based on isosceles or right angled triangle

Mark Scheme

Jan 2007

	8			
	Greatest speed is	D*B	2	
	0.64	1		
	ms ⁻¹			
(ii)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	V = 0.02 x 40	A1		-
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents displacement. nb trapezium area is 16+8+8
		M1		For $A = \frac{1}{2} (L_1 + L_2)h$ or other appropriate breakdown
	$\frac{1}{2}(70 + T) \ge 0.8 = 40$ -	A1ft		$\frac{1}{2}(30 + T) \times 0.8 = 40 - 8 - \frac{1}{2} \times 40 \times 0.8$ ft cv(0.8)
	8			
	Duration is 10s	A1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is 0.04ms ⁻²	A1	3	Accept -0.04 from correct work
	Or	M1		Using the idea that the area represents displacement.
	40-8-½ x 40 x 0.8-	A1ft		Ft cv(0.8 and 10)
	10x0.8	A1		Accept -0.04 from correct work. d=-0.04 A0
	=0.8(30-10)-a(30-			L L
	$10)^{2/2}$			
	Deceleration is			
	0.04ms^{-2}			

4728

Mark Scheme

Jan 2007

7	(i)	$R = 0.5g\cos 40^{\circ}$	B1		R = 3.7536
		$F = 0.6 \times 0.5 g \cos 40^{\circ}$	M1		For using $F = \mu R$
		Magnitude is 2.25N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		-/+0.5gsin40° – F = 0.5a	A1		Either case
		(a) Acceleration is - 10.8ms ⁻²	A1		Accept 10.8 from correct working (both forces have the same sign)
		(b) Acceleration is	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
	(iii)a)	$0 = 4 + (-10.8)T_1$ T ₁ = 0.370(3)	M1 A1		Requires appropriate sign
					Accept 0.37
	b)		M1		For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A1		ft a(up) and/or T_1
		$s = (0 + 4) \ge 0.37/2$ or	ft		(s = 0.7405)
		s = 4(0.370) +			
		$\frac{1}{2}(-10.0)(0.270)^2$			
		10.8)(0.370)	M1		For mothod of finding time taken from highest point
			1011		to A and not using a(up)
		$0.7405 = \frac{1}{2} (1.79) T_2^2$	A1ft		ft a(down) and $cv(0.7405)$ (T ₂ = 0.908 approx)
		0.370 + 0.908	M1		Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao