GCE Physics - PH1

Mark Scheme - January 2013

Question			Marking details	Marks Available	
1	(a)	(i) (ii) (iii)	Decelerating (1) Gradient changes/decreases or correct use of values from the graph (1) 0.75m s ⁻¹ (unit mark) Any tangent at 6 s (1) Speed: $0.55 - 0.75 \text{ [m s}^{-1}$] (1)	[2] [1] [2]	
		(iv) (I) (II)	No- infinite speed (or equiv) don't accept very large speed Yes- stopped	[1] [1]	
	(b)		$Velocity = \frac{Displacement}{Time}$ (1); Displacement = 0 [over 1 complete lap] (1)	[2]	
			Question 1 total	[9]	
2	(a)	(i)	$Resistance = \frac{pd}{current}$ (accept: voltage / if V and I written must be qualified)	[1]	
		(ii)	$V = JC^{-1}(1); I = Cs^{-1}(1);$ Convincing working (1) Don't accept use of t -award ecf for 3 rd mark. Alternative route using power formulae is acceptable.	[3]	
	(b)	(i)	$I = \frac{V_{in}}{R_1 + R_2}$	[1]	
		(ii)	$V_{\text{out}} = IR_2$ (1); <i>I</i> (from (i)) used correctly (1)	[2]	
	(c)	(i) (ii)	Any parallel combination shown (1); $40[\Omega]$ used correctly (1) 80 Ω Resistor combination shown (1) ecf from (c)(i)	[2]	
			$40\Omega \qquad \qquad$	[2]	
			Question 2 total	[11]	

Question			Marking details	Marks Available	
3	(a) (b)	(i) (ii) (i)	Straight line through origin. Accept $F \alpha x$. Area = $\frac{1}{2}Fx$ (1); $F = kx$ and clear substitution/manipulation (1) $F = 8.0[N]$ (1) or $k = 100 [Nm^{-1}]$ (1) Use of $\frac{1}{2}Fx$	[1] [2]	
			$(i.e \frac{1}{2} \ge 8.0 \ge 80 \ge 10^{-3})(1)$ $(i.e \frac{1}{2} \ge 100 \ge 80 \ge 10^{-3})^2)(1)$ $= 0.32[J](1)$ $= 0.32[J](1)$ (ecf for derived value of k)	[3]	
		(ii)	$0.32 = \frac{1}{2} mv^2$ (ecf) (1); $v = 4.0 [m s^{-1}]$ (1)	[2]	
	(c)		$\Delta E_{k} = Fd \text{ understood (1)} d = (0.8 + 0.4 + (2\pi(0.2))) \text{ or } 2.46 \text{ [m] (1)} \Delta E_{k} = 0.03 \text{ [J] or } (\frac{1}{2} \times 0.04 \times (4^{2} - 3.8^{2})) (1) \text{ (ecf from } (b) (ii)) F = 0.013 \text{ [N] (1) (ecf for } d) Alternative method using equations of motion and F = ma acceptable.$	[4]	
			Question 3 Total	[12]	
4	(a)	(i)	<u>Correct use</u> of $v^2 = u^2 + 2ax$ (i.e. $0 = 6^2 - 2x 9.81 x x$) (1) x = 1.8 [m] (1) Total height = 12.8 [m] (1) (ecf for x)	[3]	
		(ii) (I) (II)	$v^{2} = 2 \ge 9.81 \ge 12.8 \text{ (ecf)}$ (1) or suitable alternative $v = 15.9 \text{ [m s}^{-1}$] (1) $t_{up} = \left(\frac{0-6}{-9.81}\right) = 0.6 \text{ [s]}$ (1)	[2]	
			$t_{\text{down}} = \left(\frac{15.9(ecf) - 0}{9.81}\right) = 1.6[s] (1)$ Total time = 2.2[s] (1) (other solutions possible)	[3]	
	(b)	(i)	 (1) Ball only acted upon by <u>force due to gravity /</u> weight is the only force acting (1) Only award 2nd mark if 1st mark correct. 	[2]	
		(ii)	 (1) Marks are independent. If additional arrows present deduct 1 mark for each extra arrow. (1) 	[2]	
			Question 4 Total	[12]	

Question			Marking details	Marks Available	
5	(a)	(i) (ii)	Point where entire <u>weight</u> of object acts. Don't accept mass. Tan $\theta = 40/60$ (1); $\theta = 33.7^{\circ}$ (1)	[1] [2]	
	(b)	(i) (ii)	$V = 0.6.x \ 0.4 \ x \ 0.1 \ (1); M = \rho \ x \ V \text{ used correctly (1)}$ $T \sin\theta \text{ or equivalent (1) x 1.2 (1)} = 9.6 \ x \ 9.81 \ x \ 1.8 \ (1)$ $T = 220 \ \text{INI} \ (1)$	[2] [4]	
		(iii)	F = 220 [N] (1) $F = 220 \text{ (ecf)} \cos 40^{\circ} \text{ or equivalent (1)}$ F = 169 [N] (1) Accept Pythagoras solution.	[2]	
			Question 5 Total	[11]	
6	(a)	(i)	Correct and convincing use of $\rho = \frac{RA}{l}$ (including unit conversion)	[1]	
		(ii)	$\left(\frac{2000}{11.2}\right) = 179 \text{ A unit mark}$	[1]	
		(iii)	$v = \frac{I}{nAe}$ rearranged (or shown numerically) (1) $v = 6.0 \times 10^{28} \times 3$ (1)		
			$v = 1.55 \times 10^{-5} [\text{m s}^{-1}] (\text{ecf on } I \text{ and } n) \ (1)$	[3]	
	(b)	(i)	Same (or equivalent)	[1]	
		(11)	<i>v</i> increased (1) because; <i>A</i> decreased, <i>I</i> , <i>n</i> , <i>e</i> unchanged by implicaton (1)	[2]	
		(iii)	Increased frequency / more collisions <u>between electrons and</u> <u>lattice</u> / atoms / ions or electrons carry greater kinetic energy (1) leading to <u>increased vibrational / kinetic energy of lattice atoms</u> (1)	[2]	
			Question 6 Total	[10]	

Question			Marking details	Marks Available
7	(a)		<i>V</i> - energy (per coulomb) used in [external] resistor / circuit. (1) <i>E</i> - energy (per coulomb) transferred / supplied by source / in the whole circuit (1) <i>Ir</i> - energy (per coulomb) wasted / lost in source / cell / internal resistance (1) Use of 'per coulomb / unit charge' once. (1)	[4]
	(b)	(i)	4[Ω]	[1]
		(ii) (iii)	Gradient attempted e.g. 60/10 (1) (or use of equation ecf from (b) (i)) emf = 6 [V] (1) $1/I = 4 [A^{-1}]$ or by implication (1) $R = 20 [\Omega]$ (1) Use of I^2R i.e. $(0.25)^2 \ge 20$ (ecf) (1) or correct substitution into both $V = IR$ and $P = IV$ or V^2/R R = 1.25 [W] (1)	[2]
	(c)	(i) (ii) (iii)	P = 1.25[w] (1) emf = 12.0[V] (ecf) <u>and</u> $r = 8.0[\Omega]$ (ecf) $R = 52.0[\Omega]$ (ecf) y intercept ($r \rightarrow 8.0 \Omega$ (ecf)) (1) Precise gradient e.g. through (5,52) (ecf) (1)	[4] [1] [2]
			Question 7 Total	[15]