PH4

Question		n	Marking details	Marks Available
1	(a)		$p = \frac{1}{3}\rho \overline{c^2}$ rearranged e.g. $\overline{c^2} = \frac{3p}{\rho}$ (1)	
			$c_{\rm rms} = 514 [{\rm m \ s}^{-1}] (1)$	2
	(b)	(i)	8.06×10^{22}	
			molar mass = 27.9 [g mol ⁻¹] [~ 28 g mol ⁻¹] Or: Amount of gas = $\frac{8.06 \times 10^{22}}{6.02 \times 10^{23}}$ mol (1) [= 0.134 mol]	
			6.02×10 ²³ Mor (1) [6.13 + Mor] 3.75 g [-281]	
			So molar mass = $\frac{3.75 \mathrm{g}}{0.134 \mathrm{mol}} [=28 \mathrm{g mol}^{-1}]$	2
	(c)		p = mv used, e.g. $p = 460m$ (1) $p = 2.14 \times 10^{-23} \text{ kg m s}^{-1} / \text{N s} ((UNIT \text{ mark}))$ (1)	2
		(ii)	$\lambda = \frac{h}{p}$ (1)[manipulation: $p = \frac{h}{\lambda}$ by itself is not enough]	
			[or by impl.] $\lambda = 3.1 \times 10^{-11} [\text{m}]$ (1) Allow e.c.f.	2
			Question 1 total	[8]
2	(a)	(i) (ii)	(20.0, 1.00) labelled A and (23.0, 1.00) labelled B (23.0, 0.80) labelled C	1 1
	(b)	(i)	$n = \frac{pV}{RT} \tag{1}$	
			[manipulation – or by impl.] = 0.745 [mol] (1) [$N = nN_A = 14.5 \times 10^{23}$ Allow e.c.f.	2
		(iii	$T = \frac{pV}{nR}$ [or by impl.]; (or $V/T = \text{constant or } P/T = \text{constant}$)	
			$T_{\rm B} = 371 [{\rm K}]$ and $T_{\rm C} = 297 [{\rm K}] (1) {\rm e.c.f.}$	2
	(c)		at least two values substituted into $E = mc\Delta\theta$ (1) $\Delta\theta = 1.36$ [K or °C] (1)	2
	(d)		Area under graph = work or by clear implication (1) detail, e.g. $\frac{1}{2} \times 0.21 \times 10^5 \times 3 \times 10^{-3}$ (1) [square counting ok] 31.5 [J] or 30 [J] (ans) (1)	3
	(e)		$\Delta U = Q - W$ quoted or by clear implication or 1 st law quoted (1); and $\Delta U = 0$ (1)	2
			Question 2 total	[14]

Question		Marking details	Marks Available
3	(a)	$A = \pi \times 1.8^2$ or implied in numbers (1) Volume per second = $\pi r^2 v$ [or by some method e.g. $m = \rho v$] (1) Mass flow rate = $\pi \times 1.8^2 \times 250 \times 0.4$ [= 1018 kg s ⁻¹] (1)	3
	(b)	Thrust = Mass / sec $\times \Delta v$ (1) [or equiv.][i.e. (a) $\times \Delta v$] [or by impl.] = 40 [kN] (1)	2
	(c)	Aeroplane momentum is constant (1) [this mark is implied if the candidates imply or state that the exhaust air speed = 250 m s ⁻¹] No (overall) change in air momentum (1) Or momentum of air forwards (due to drag etc.) (1) is balanced by (momentum of exhaust air backwards (1) Or equivalents if candidate states momentum of aeroplane is decreasing (due to small decrease in mass i.e. kerosene loss) e.g. momentum of aeroplane is decreasing due to decreasing mass (1) so overall transfer of momentum to air to the right (1)	2
		Question 3 Total	[7]
4	(a)	m_1 Earth's mass (1) m_2 satellite mass (1) r radius of <u>orbit</u> or distance between masses (1) ω angular velocity or angular speed [accept: pulsatance] [of satellite] (1)	4
	(b)	m_2 clearly cancelled and r collected or by implication (1) e.g. $\frac{Gm_1m_2}{r^3} = m_2\omega^2$	
		$\omega = \frac{2\pi}{T}$ substituted or quoted (1) clear algebra leading to $r = \sqrt[3]{\frac{Gm_1T^2}{4\pi^2}}$ (1)	
		but $r = h + R_E$ (1)	4
	(c)	period of orbit, $T = 24 \times 60 \times 60$ s or 86400 s (1) $h = 35.9 \times 10^6$ m (1)	2
	(d)	$\Delta V = \pm \frac{Gm}{r} \pm \frac{Gm}{r} \text{ (i.e. attempt at combining potentials)}$ $P.E. = m\Delta V \text{ used (1)} \text{ i.e. } 850 \times \text{ any change in potential}$ $[N.B. \Delta PE = \pm \frac{Gm}{r} \pm \frac{Gm}{r} \checkmark\checkmark] \Delta PE = 4.51 \times 10^{10} \text{ J} \text{ (UNIT)}$	
		mark) (1) Allow e.c.f.	3
		Question 4 Total	[13]

(Questic	n	Marking details	Marks Available
5	(a)		concentric rings: minimum 2 (1) arrows out: minimum 2 (1) correct labelling (1)	
			correct machining (1)	3
	(b)		field inward [or equivalent e.g. opposite]	1
	(c)		values substituted into $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ (1) [or by impl.]	
			$E = 2.05 \times 10^7 \text{ V m}^{-1} \text{ or N C}^{-1} \text{ [or equivalent] } ((\mathbf{UN IT mark}))(1)$	2
	(d)	(i)	values substituted into $V = \frac{Q}{4\pi\varepsilon_0 r}$ (1) [or by impl.]	
		(ii)	$V = 3.24 \times 10^6 [V] (1)$ zero	2 1
	(e)		$\Delta V = 3.24 \times 10^6 \text{ [V] [or by impl.]} \text{ Allow e.c.f. (1)}$	
			$\Delta PE - q\Delta V (1)$ $E_{k} = 7.94 \text{ [J] (1)}$	3
			Question 5 Total	[12]
6	(a)		$f = \frac{1}{T}(1); f = 1.23 \text{ [Hz] (1)}$	2
	(b)		$\omega = 2\pi f \text{ or } \frac{2\pi}{T} $ (1)	
			$T = 2\pi \times 1.23 \text{ (allow e.c.f.) or } 2\pi/0.81 = (7.76 \text{ rad s}^{-1})$	2
	(c)		natural frequency (period) close to walking frequency (period) (1) resonance occurs (1) which could break (or damage) bridge (1)	3
	(d)		A and ω subbed into $y = A \sin \omega t$ (1)	
			y = -10.3cm (1) [N.B. $y \sim 2.0$ cm if calculators set to degrees - 1 mark only]	2
	(e)	(i) (ii)	$a = \omega^2 x$ or $\omega^2 A \sin \omega t$ (1) $\omega^2 x = 9.81 \text{ m s}^{-2}(1) x = 16.1 \text{ [cm] [16.3 if } \omega = 7.76 \text{ rad s}^{-1} \text{ used] (1)}$ Point indicated at $\sim 0.12 \text{ s ecf (1)}$ and 2^{nd} point anywhere $> 0.28 \text{ s (1)}$	3 2
			Question 6 Total	[14]

(Question	Marking details	Marks Available
7	(a)	$\Delta \lambda = 2.50 \ [\pm 0.05] \times 10^{-14} \ \text{m} \ (1)$ $v = \frac{\Delta \lambda}{650 \times 10^{-9}} \times 3.00 \times 10^{8} \ (1) \ [= 11.54 \ \text{m s}^{-1} \ \text{if} \ 2.5 \times 10^{-14} \ \text{m used}]$	2
	(b)	period = 12.4 - 2.6 [= 9.8 years] allow 9.8 ± 0.1 years (1) $v = \frac{2\pi r}{T}$ or equiv [e.g. $v = \omega r$ and $\omega = \frac{2\pi}{T}$](1) radius = 5.68 × 10 ⁸ [m] (1) Allow e.c.f on T	
	(c)	$[r = 5.90 \times 10^8 \text{ m if } v = 12 \text{ m s}^{-1} \text{ used}]$ $d^3 = \frac{T^2 G(M_1 + M_2)}{4\pi^2} \text{ [i.e. algebra nearly complete] (1)}$	3
		$M_1 + M_2 \approx M_1 \text{ stated [or in words] (1)}$ $d = \sqrt[3]{\frac{(9.81 \times 24 \times 365 \times 3600)^2 \times 6.67 \times 10^{-11} \times 2 \times 10^{31}}{4\pi^2}}$ [= 1.48 × 10 ¹² m] Allow e.c.f. (1)	3
	(d)	$r_1 \approx \frac{M_2}{M_1} d \text{ or similar (1)}$ $M_2 = 7.7 \times 10^{27} \text{kg} \text{(1) Allow e.c.f.}$	2
	(e)	The temperature of the planet is greater than that of the Earth [or equiv.] (1) Because of factors of 3000 and 10 ² [or 3000/10 ² seen] (1) [Accept 30 times hotter]	2
		Question 7 Total	[12]

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk