

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Further Pure Mathematics FP3 (6669/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UA038879 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme		Marks
	$P(2, 1, 3)$ and $\mathbf{r}.(\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 3$		
1.(a)	<i>l</i> is parallel to $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$	An appreciation that $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ is the direction of the line (may be implied).	M1
	$\mathbf{r} = \mathbf{2i} + \mathbf{j} + \mathbf{3k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{r} - (2\mathbf{i} + \mathbf{j} + 3\mathbf{k})) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 0$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 5\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}$	A correct vector <u>equation</u> in any form. (Allow any multiple of the direction vector.)	A1
			(2)
(b)	$ \begin{pmatrix} 2+t\\ 1-2t\\ 3-t \end{pmatrix} \begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix} = 3 $	Substitutes a parametric form of their line from part (a) into the equation of the plane. This statement is sufficient.	M1
	2 + t - 2(1 - 2t) - (3 - t) = 3	Correct equation (allow unsimplified)	A1
	$2+t-2+4t-3+t=3 \Longrightarrow t = \dots$	Solves to find a value for <i>t</i> Dependent on the first M	d M1
	$t = 1 \Longrightarrow l$ meets Π at $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Correct position vector (allow as coordinates (3, -1, 2))	A1
			(4)
	$PQ = \mathbf{3i} - \mathbf{j} + \mathbf{2k} - (\mathbf{2i} + \mathbf{j} + \mathbf{3k}) $		
(c)	$= \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector <i>PQ</i> or <i>QP</i> and correct Pythagoras.	M1
Way 1	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
	$t = "1" \Longrightarrow \overline{PQ} = "1" \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$		
(c) Way 2	$= \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector <i>PQ</i> using their value for <i>t</i> and their normal vector and correct Pythagoras.	M1
	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
			Total 8

Question	Scheme			Marks	
2.(a)	$\mathbf{M}\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 5 \\ 2 & 1 & 0 \end{pmatrix} \qquad \begin{array}{c} \text{Attempt} \\ \text{product} \\ \text{or attempt} \\ \text{column} \end{array}$	ts MM of at le opts ma or find	\mathbf{I}^{T} or $\mathbf{M}^{\mathrm{T}}\mathbf{M}$ or scalar east one pair of columns agnitude of at least one ds det \mathbf{M} or attempts \mathbf{M}^{-1}	M1	
	$= \begin{pmatrix} 5 & 2 & 0 \\ 2 & 17 & 20 \\ 0 & 20 & 25 \end{pmatrix} \neq \mathbf{I}$ ∴ M not orthogonal. or scalar MT and MMT or may be correct or relevant extra no	r produ $\neq \pm 1$ (<u>conclustication</u> r \mathbf{M}^{-1} errors work (a elementiation tes for	uct \neq 0 or magnitude \neq 1 (must see ±) or $\mathbf{M}^{-1} \neq$ lusion. Note that not all of is necessary and there but there must be some (at least one correct ent). NB det $\mathbf{M} = -5$. See r \mathbf{M}^{-1}	A1	
				(2))
(b)	$\begin{vmatrix} 1-\lambda & 0 & 2\\ 0 & 4-\lambda & 1\\ 0 & 5 & -\lambda \end{vmatrix} = 0$ This other determined	statem brack minan	nent is sufficient. (allow kets provided the nt is implied later)	M1	
	$(1-\lambda)\left[\left(4-\lambda\right)\left(-\lambda\right)-5\right]\left(-0\left(0-\lambda\right)\right)$	-0)+2	2(0-0)=0	M1	
	Attempts characteristic equation (= 0 may be Allow one slip e.g. – usually the (1 - 2)/(4 - 2)(-2) = 0	e impli omissi	ied by their value(s) for λ) ion of the "-5"		
	$\frac{(1-\lambda)((4-\lambda)(-\lambda)-5)=0}{2-1}$		2 - 1 with no oppose	A 1 as a	
	$\lambda^{2} - 4\lambda - 5 = 0$ $\Rightarrow \lambda = 5, \lambda = -1$ $M1: Attempts to from their char 3 term quadration A = 5, \lambda = -1$	to find acteris	the other 2 eigenvalues stic equation by solving a	M1A1	
				(5))
(c)	$ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{or} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \\$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{vmatrix} A \\ e \\ in \\ e \end{vmatrix} $	A correct statement for the eigenvalue 1. (May be mplied by correct equations)	M1	
	$\alpha(\mathbf{i}+0\mathbf{j}+0\mathbf{k})$ where α is a constant	A	Any vector of this form.	A1	
				(2))
(d)	$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} t \\ 2t \\ -t \end{pmatrix} = \begin{pmatrix} -t \\ 7t \\ 10t \end{pmatrix}$ $M1: A$ parametric by x complete the set of	Attempt letric for y M. C ponen <u>gh the</u> orrect ut "t"	ot to multiply the Form or direction of the Condone use of 0 for the Int but the line <u>must pass</u> <u>e origin.</u> image vector with or	M1A1	
	Cartesian equation $\frac{x}{-1} = \frac{y}{7} = \frac{z}{10}$ M1: C cartes passin A1: C	Correct ian for ng thro orrect	t method to convert to rm of a straight line ough the origin. equations (any multiple)	M1A1	
				(4) Total 12)
				10tal 13	

Question	Scheme		Marks
3. (a)	$x^2 - 2x + 3 = (x - 1)^2 + 2$	M1: Attempt to complete the square. Allow $(x-1)^2 + k, k \neq 0$ A1: Correct expression	M1A1
	$\int \frac{1}{\sqrt{(x-1)^2+2}} dx = \alpha \operatorname{arsinh}(f(x))$	Allow $\alpha \ln \left(f(x) + \sqrt{(f(x))^2 + \beta} \right) (\beta > 0)$	M1
	$\left[\operatorname{arsinh}\left(\frac{x-1}{\sqrt{2}}\right) \right]_{1}^{2} = \operatorname{arsinh}\frac{1}{\sqrt{2}}$	Any equivalent exact form. Allow $\ln\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$ but no other terms e.g. arsinh(0)	A1
			(4)
(b)	$e^{2x}\sinh x = e^{2x}\left(\frac{e^x - e^{-x}}{2}\right)$	Substitutes the correct exponential of sinhx	M1
	$\frac{1}{2}(e^{3x}-e^{x})$	Correct expression with powers of e combined.	A1
	$\int_{1}^{1} (3x + x) \int_{1}^{1} (1 + 3x + x)^{1}$	$\int e^{px} dx = q e^{px}$ at least once and	
	$\int_{0}^{\frac{1}{2}} (e^{3x} - e^{x}) dx = \left[\frac{1}{2} \left(\frac{1}{3} e^{3x} - e^{x} \right) \right]_{0}^{1}$ $= \frac{1}{2} \left(\frac{1}{3} e^{3} - e^{1} \right) - \frac{1}{2} \left(\frac{1}{3} e^{0} - e^{0} \right)$	some correct use of the limits 0 and 1 and subtracts the right way round	M1
	$=\left(\frac{\mathrm{e}^3}{6} - \frac{\mathrm{e}}{2} + \frac{1}{3}\right)$	Any exact equivalent (allow e ¹) but all like terms collected but isw following a correct answer.	A1
			(4)
			Total 8
	(b) Integration by	parts way 1	
	$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \left[\frac{1}{4}e^{2x}\cosh x\right]_{0}^{1} + \frac{1}{4}I$		
	$\frac{3}{4}I = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \left[\frac{1}{4}e^{2x}\cosh x\right]_{0}^{1}$		
	M1: Parts twice in the correct direction		
	A1: A correct expression for <i>I</i> or any constant multiple of <i>I</i>		
	$\int_{0}^{1} e^{2x} \sinh x dx = \frac{4}{3} \left(\frac{1}{2} e^{2} \sinh 1 - \frac{1}{4} e^{2} \cosh 1 + \frac{1}{4} \right) M1A1 \text{ oe}$		
	M1: Correct use of limits having	integrated by parts twice	
	A1: Correct expression (oe)		
	(b) Integration by parts way 2		
	$I = \lfloor e^{2x} \cosh x \rfloor_0 - \int_0^{\infty} 2e^{2x} \cosh x dx = \lfloor e^{2x} \cosh x \rfloor_0^{\infty} - \lfloor 2e^{2x} \sinh x \rfloor_0^{\infty} + 4I$		
	$-3I = \left[e^{2x} \cosh x \right]_0^1 -$	$\left\lfloor 2e^{2x}\sinh x \right\rfloor_{0}^{1}$	
	M1: Parts twice in the c	correct direction	
	A1: A correct expression for I or	any constant multiple of I	
	$\int_0^1 e^{2x} \sinh x dx = -\frac{1}{3} \left(e^2 \cos x \right)$	$\sinh 1 - 1 - 2e^2 \sinh 1$	
	M1: Correct use of limits having A1: Correct expre	integrated by parts twice ssion (oe)	
			ļ

Question	Sche	eme	Marks		
4. (a)	$\tanh x = \frac{\frac{e^x - e^{-x}}{2}}{\frac{e^x + e^{-x}}{2}} \text{ or }$	M1			
	Use of the correct expe				
	$1 - \tanh^2 x = 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = \frac{1}{2}$	d M1			
	Attempts $1 - \tanh^2 x$ with their tanhx	, obtains a common denominator and			
	expands the numerator correctly – the	ree terms from $(a+b)^2$ at least once			
	$=\frac{2e^{x}.2e^{-x}}{(e^{x}+e^{-x})^{2}}$				
	$=\frac{4}{(e^{x}+e^{-x})^{2}}=\operatorname{sec} h^{2}x^{*}$	Correct completion with no errors	A1*		
	Allow candidates to process both Note that it is possible to start from reversing the	h sides and 'meet in the middle' m sech ² x and obtain $1 - \tanh^2 x$ by above work			
	C		(3)		
(b)	Ignore any imagina				
	$4\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)-3\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)=3$	Substitutes the correct exponential forms for sinhx and coshx	M1		
	$e^x - 7e^{-x} = 6$				
	$e^{2x} - 6e^x - 7 = 0$	Obtains a quadratic in e^x	M1		
	$(e^x+1)(e^x-7)=0 \Longrightarrow e^x=$	Attempt to solve their 3TQ in e^x as far as $e^x =$	M1		
	$x = \ln 7$ or awrt 1.95		A1		
			(4)		
			Total 7		

Alternati	ives for (b)	
$4 \sinh r - 3 \cosh r - 3 - 3$		
$4 \operatorname{SIIII} x - 5 \operatorname{COSII} x - 5 $	$\Rightarrow 4 \sinh x = 3 \pm 3 \cosh x$	M1
\rightarrow / cosil $x - 1$	$3\cos x - 23 = 0$	-
M1: Attempt to square correctly and obtains a quadratic in $\sinh x$		
$7 \cosh x - 18 \cosh x - 25 = 0 =$	-	
$\cosh x = \frac{25}{7} \Rightarrow \frac{e^x + e^{-x}}{2} = \frac{25}{7} \Rightarrow 7e^{2x} - 50e^x + 7 = 0$		
Uses the correct form of coshx in term	ns of exponentials to obtain a 3TQ in e^x	M1
$7e^{2x} - 50e^x + 7 = 0 \Longrightarrow (7e^{2x})$	$(x^{x}-1)(e^{x}-7)=0 \Longrightarrow e^{x}=\dots$	M1
Attempt to solve the	ir 3TQ as far as $e^x =$	
$x = \ln 7$ or awrt 1.95	No other values	A1
$4\sinh x - 3\cosh x = 3$	$\Rightarrow 4 \sinh x - 3 = 3 \cosh x$	241
$\Rightarrow 7 \sinh^2 x$	$-24\sinh x = 0$	MI
M1: Attempt to square correctly and obtains a quadratic in coshx		
$7 \sinh^2 x - 24 \sinh x = 0 \Longrightarrow \sinh x (7 \sinh x - 24) = 0$		
$\sinh x = \frac{24}{7} \Longrightarrow \frac{e^{x} - e^{-x}}{2} = \frac{24}{7} \Longrightarrow 7e^{2x} - 48e^{x} - 7 = 0$		
Uses the correct form of sinhx in terms of exponentials to obtain a 3TQ in e^x		M1
$7e^{2x} - 48e^{x} - 7 = 0 \Longrightarrow (7e^{x} + 1)(e^{x} - 7) = 0 \Longrightarrow e^{x} = \dots$		M1
Attempt to solve their 3TQ as far as $e^x =$		
$x = \ln 7$ or awrt 1.95 No other values		
$4\sinh x - 3\cosh x = 3 =$	\Rightarrow 4 tanh $x - 3 = 3$ sech x	M1
$\Rightarrow 25 \tanh^2 x - 24 \tanh x = 0$		1411
M1: Attempt to square correctly		
$25 \tanh^2 x - 24 \tanh x = 0 \Longrightarrow \tanh x (25 \tanh x - 24) = 0$		
$\tanh x = \frac{24}{25} \Longrightarrow \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{24}{25} \Longrightarrow e^{2x} = 49$		
Uses the correct form of $tanhx$ in terms of exponentials to obtain a 2TQ in e^x		M1
$e^{2x} = 49 \Rightarrow e^x = \dots$		M1
Attempt to solve their 2TQ as far as $e^x =$		
$x = \ln 7$ or awrt 1.95	No other values	A1

PMT Question Scheme $x^{2}(1+x^{2})^{-\frac{1}{2}}$ $\frac{\mathrm{d}y}{\mathrm{d}x}$ $(1+x^2)$ x^2 $(1+x^2)$ $1 + x^2$ 5. NB $\frac{(1+x^2)^{\frac{1}{2}}-x^2(1+x^2)^{-\frac{1}{2}}}{x^2}$ 1 $(1+x^2)^{\frac{3}{2}}$ 1 ****

$=\frac{1}{\sqrt{1+x^2}}$ **ag**	Correct sol	ution with no errors seen	A1
			(4)
			Total 4
Alte	ernative 1		
$y = \operatorname{artanh} \frac{x}{\sqrt{1+x}}$	$\frac{1}{x^2}$ \Rightarrow tanh y	$=\frac{x}{\sqrt{1+x^2}}$	
$\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{1}{2}\right)$	$\frac{(1+x^2)^{\frac{1}{2}} - x^2}{(1+x^2)^{\frac{1}{2}}}$	$\frac{(1+x^2)^{-\frac{1}{2}}}{(1+x^2)^{-\frac{1}{2}}}$	
$\frac{dy}{dx} = \underbrace{\left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right)}_{\underbrace{\left(\frac{1 + x^2}{1 + x^2}\right)}_{\underbrace{\frac{1}{2} - x^2}}_{\underbrace{\frac{1}{2} - x^2}}$	$\left(\frac{1+x^2}{2}\right)^{-\frac{1}{2}}$	<u>M1</u> : Divides by the correct form of $\operatorname{sech}^2 y$ or their simplified $\operatorname{sech}^2 y$ in terms of <i>x</i> <u>M1</u> : Correct quotient or product rule A1: Completely correct expression	<u>M1M</u> A1
The	n as above		
Alternative 2			
$y = \operatorname{artanh} - \frac{x}{x} \Longrightarrow \operatorname{tanh} $	$y = \frac{x}{\sqrt{x}}$	$\Rightarrow \tanh^2 y = \frac{x^2}{x^2}$	

Marks

<u>M1M</u> A1

<u>M1</u>: Correct form for the derivative of artanh*x*

<u>M1</u>: Correct quotient or

product rule on $\frac{x}{\sqrt{1+x^2}}$

A1: Completely correct expression

using $\frac{x}{\sqrt{1+x^2}}$.

1 Millinat	
$h\frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = -\frac{1}{\sqrt{1+x^2}}$	$\frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}$
$2 \tanh y \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\int_{-\infty}^{\infty} \frac{\mathrm{d}y}{\mathrm{d}x} + \int_{-\infty}^{\infty} \frac{\mathrm{d}y}{\mathrm{d}x} \right)$	$\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}$

$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \times \frac{(1 + x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1 + x^2) - 2x^3}{(1 + x^2)^2}$	<u>M1M</u> A1
M1: Divides by the correct form of $\operatorname{sech}^2 y$ and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression	

Then as above

Question	Scheme		Marks
	In this question condone the		
6(a)	Gradient $m = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}$	Correct attempt at chord gradient – do not allow slips unless a correct method is clear	M1
	$y - 2\sin \alpha = m(x - 3\cos \alpha)$ or $y - 2\sin \beta = m(x - 3\cos \beta)$ or $y = mx + c$ and attempts to find c using P or Q	A correct straight line method using their chord gradient and the point <i>P</i> or the point <i>Q</i>	M1
	$y - 2\sin\alpha = \frac{2\sin\beta}{3\cos\beta} - \frac{2\beta}{3\cos\beta} -$	$\frac{-2\sin\alpha}{-3\cos\alpha}(x-3\cos\alpha)$	
	$y - 2\sin\beta = \frac{2\sin\beta}{3\cos\beta} - \frac{2\beta}{3\cos\beta} - \frac{2\beta}{3$	$\frac{-2\sin\alpha}{-3\cos\alpha}(x-3\cos\beta)$	
	$y - 2\sin\alpha = \frac{4\cos\frac{\alpha+\beta}{2}}{-6\sin\frac{\alpha+\beta}{2}}$	$\frac{\frac{\beta}{2}\sin\frac{\beta-\alpha}{2}}{\frac{\beta}{2}\sin\frac{\beta-\alpha}{2}}(x-3\cos\alpha)$	A1
	$y = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}x + 2\sin\alpha$	$\alpha - \frac{3\cos\alpha(2\sin\beta - 2\sin\alpha)}{3\cos\beta - 3\cos\alpha}$	
	$y = -\frac{2\cos\frac{\alpha+\beta}{2}}{3\sin\frac{\alpha+\beta}{2}}x + 2\sin\alpha + \frac{2\cos\alpha\cos\frac{\alpha+\beta}{2}}{\sin\frac{\alpha+\beta}{2}}$		
	A correct equation for the chord in any form .		
	$3y\sin\frac{1}{2}(\alpha+\beta) + 2x\cos\frac{1}{2}(\alpha+\beta) = 6(\cos\alpha\cos\frac{1}{2}(\alpha+\beta) + \sin\alpha\sin\frac{1}{2}(\alpha+\beta))$		
	$3y\sin\frac{1}{2}(\alpha+\beta) + 2x\cos\frac{1}{2}(\alpha+\beta) = 6(c)$	$\cos\beta\cos\frac{1}{2}(\alpha+\beta)+\sin\beta\sin\frac{1}{2}(\alpha+\beta))$	
	$\frac{x}{3}\cos\frac{1}{2}(\alpha+\beta) + \frac{y}{2}\sin\frac{1}{2}(\alpha+\beta)$	$+\beta) = \cos\frac{1}{2}(\alpha - \beta) ** ag**$	A1cso
	This is cso – there must no errors in applying the factor formulae and sufficient working must be shown to justify the printed answer but allow		
	$\cos\beta\cos\frac{1}{2}(\alpha+\beta)+\sin\beta$	$\sin\frac{1}{2}(\alpha+\beta) = \cos\frac{\alpha-\beta}{2}$	
			(4)
(b)	$\left(\frac{3\cos\alpha+3\cos\beta}{2}\right)$	$\frac{2\sin\alpha + 2\sin\beta}{2}\bigg)$	
	$(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha)),$	$2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha))$	B1
	$(3\cos\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta),$	$2\sin\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta))$	
	Correct coordinates of	mid-point in any form	
	Coordinates must be in this order b	ut condone outer brackets missing	(1)

Question	Scheme		
(c)	Centre of chord is $(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha), 2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha))$ Attempt factor formulae on both coordinates of mid-point at any stage in (c)	M1	
	May be implied by their $\pm \frac{y}{x}$ below		
	$\pm \frac{y}{x} = \pm \frac{2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha)}{3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha)} \left(= \pm \frac{2\sin\frac{1}{2}(\beta+\alpha)}{3\cos\frac{1}{2}(\beta+\alpha)} \right)$		
	Or $\pm \frac{x}{y} = \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)} \left[= \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)} \right]$		
	$\frac{2}{2} \frac{2}{2} \frac{2}$		
	M1: Obtains an expression for k or $-k$ or $-k$ or $-k$		
	used)		
	A1: Correct expression in any form		
	$m = -\frac{2\cos\frac{1}{2}(\beta + \alpha)}{3\sin\frac{1}{2}(\beta + \alpha)}$ Must be seen or used in (c)	B1	
	$\frac{\sin\frac{1}{2}(\beta+\alpha)}{\cos\frac{1}{2}(\beta+\alpha)} = -\frac{2}{3m} \operatorname{So} \frac{y}{x} = \frac{2}{3} \left(-\frac{2}{3m}\right) \Longrightarrow k = \frac{4}{9m}$	A1 cso	
		(5)	
		Total 10	

Question	Scheme			
7. (a)	$y = \sqrt{r^2 - x^2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -x(r^2 - x^2)^{\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = px(r^2 - x^2)^{-\frac{1}{2}}$		
	Or	Or	M1	
	$2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	$px + qy\frac{\mathrm{d}y}{\mathrm{d}x} = 0$		
	Attempts to differentiate explicitly or in			
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^2}{r^2 - x^2} \text{ or } 1 + \frac{x^2}{y^2}$	Substitutes their derivative into $1 + \left(\frac{dy}{dx}\right)^2$	M1	
	$=\frac{r^2-x^2+x^2}{r^2-x^2}=\frac{r^2}{r^2-x^2}*$	cso	A1*	
	This is cso and so there must be no errors e.g. $\frac{dy}{dx} = \frac{x}{y}$ could give the correct			
	answer but loses the A1 but allow to show equivalence of lhs and rhs			
			(3)	
(b)	$S = (2\pi) \int y \sqrt{\frac{r^2}{r^2 - x^2}} dx$ $= (2\pi) \int \sqrt{r^2 - x^2} \sqrt{\frac{r^2}{r^2 - x^2}} dx$ $= [2\pi r x]_{-r}^r \text{ or } [2\pi r x]_0^r$	M1: Use of $\int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ using their answer to part (a) (must be y and not y ²) 2π not required here A1: Correct expression including 2π (may be implied by later work but must appear before any integration) Substitutes for y in terms of x. Dependent on first M. Substitutes the limits r and $-r$ or 0 and r into an expression of the form $k\pi rx$ and subtracts. The use of the 0 limit can be taken on trust if omitted. Dependent on both	M1A1 dM1 ddM1	
		previous method marks.		
	If they reach $2\pi r^2$ correctly then needed e.g. some matrix	aouble, then some justification is		
	$=4\pi r^2 *$	cso	A1	
		1	(5)	
	Note that $S = 2 \times 2\pi \int_{0}^{r} y \sqrt{\frac{r^2}{r^2 - x^2}} dx$ followed by correct work could			
	score full marks as could the co			
(c)	arc length $=\frac{\pi}{2}$	Ignore any working	B1	
			(1)	
			Total 9	

Question	Schem	Scheme	
8.(a)	$\mathbf{OA} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \mathbf{OB} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{OC} = \mathbf{AB} =$	$\begin{bmatrix} 0\\2\\1 \end{bmatrix}, \mathbf{BC} = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \mathbf{AC} = \begin{bmatrix} -1\\3\\1 \end{bmatrix}$	
	$AB \times AC = -i - j + 2k$ Or e.g. $BA \times BC = i + j - 2k$	M1: Attempt vector product for two sides of the triangle. If the method is unclear, at least 2 components must be correct. A1: Correct vector	M1A1
	Area ABC = $\frac{1}{2}\sqrt{1^2 + 1^2 + 2^2}$	Attempts $\frac{1}{2}$ their AB × AC Dependent on the first M	d M1
	$\frac{1}{2}\sqrt{6}$	Accept equivalents or awrt 1.22	A1
	Note that triangles OAB and OBC have the same area but score 0/4 It must be triangle ABC		
			(4)
(b)	$\mathbf{b} \times \mathbf{c} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{j} + \mathbf{k}) = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Attempt $\mathbf{b} \times \mathbf{c}$. If the method is unclear, at least 2 components must be correct.	M1
	$=\left(\frac{1}{6}\right)(\mathbf{i}-\mathbf{j}).(\mathbf{-i}-\mathbf{j}+\mathbf{2k})=\left(\frac{1}{6}\right)(-1+1)=0$	M1: Attempt scalar product of a with their $\mathbf{b} \times \mathbf{c}$ to obtain a number not a vector. A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks) Just = $\mathbf{a}.(-\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 0$ would lose the A1	M1A1
			(3)
	Alternative		
	$(\mathbf{a}.\mathbf{b} \times \mathbf{c} =) \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix}$	Writes this statement (allow other brackets provided the determinant is implied later)	M1
	=(1-2)+1(1)-0=0	M1: Clear attempt at determinant A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks)	M1A1
(c)	Volume of tetrahedron (OABC) = 0 $\mathbf{a} = \mathbf{b} - \mathbf{c}$ oe or $\mathbf{c} = \mathbf{b} - \mathbf{a}$ oe $\mathbf{b} \times \mathbf{c}$ is perpendicular to \mathbf{a} or \mathbf{a} is parallel to \mathbf{CB} All vectors/points lie in the same plane OABC is a parallelogram \mathbf{a}, \mathbf{b} and \mathbf{c} are linearly dependent Do not isw – if there are contradictory or wrong statements award B0		B1
	······································		(1)
			Total 8

Question	Scheme		Marks
9(a)	$\int (x^2 + 1)^{-n} dx = x(x^2 + 1)^{-n} + \int xn(x^2 + 1)^{-n-1} 2x dx$		M1A1
	M1: Integration by parts in the correct direction A1: Correct expression (If the parts formula is not quoted and the expression is wrong, score M0A0)		
	$= x(x^{2}+1)^{-n} + 2n \int x^{2} (x^{2}+1)^{-n-1} dx$		
	$= x(x^{2}+1)^{-n} + 2n \int (x^{2}+1)^{-n} - (x^{2}+1)^{-n-1} dx$	Use of $x^2 = x^2 + 1 - 1$ or equivalent. Dependent on the previous method mark.	dM1
	$I_n = x(x^2 + 1)^{-n} + 2nI_n - 2nI_{n+1}$	Correctly replaces $\int (x^2 + 1)^{-n} dx \text{ and } \int (x^2 + 1)^{-n-1} dx \text{ by}$ <i>I_n</i> and <i>I_{n+1}</i> . Dependent on both previous method marks .	ddM1
	$I_{n+1} = \frac{x(x^2+1)^{-n}}{2n} + \frac{2n-1}{2n}I_n$	Correct completion to the printed answer with no errors .	A1cso
			(5)
(b)	$I_2 = \frac{x(x^2+1)^{-1}}{2} + \frac{1}{2}I_1$	Correct application of the given reduction formula using $n = 1$ only	M1
	$I_1 = \int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x \left(+C \right)$	$I_1 = k \arctan x$ (must be x and not just for arctan)	M1
	$I_2 = \frac{x}{2(x^2 + 1)} + \frac{1}{2}\arctan x(+C)$	Cao (constant not needed)	A1
			(3)
			Total 8

2. (a)
$$\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} 5 & -10 & 8 \\ 0 & 0 & 1 \\ 0 & 5 & -4 \end{pmatrix}$$

 $\mathbf{M}^{\mathrm{T}} \mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 41 & 4 \\ 2 & 4 & 5 \end{pmatrix}$

3. (b) Parts once then exponentials

$$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\frac{e^{x}-e^{-x}}{2}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\frac{e^{x}+e^{-x}}{2}dx$$

M1 integrates by parts and writes cosh*x* as exponentials A1 Correct expression

$$= \left[\frac{1}{2}e^{2x}\frac{e^{x}-e^{-x}}{2}\right]_{0}^{1} - \left[\frac{1}{12}e^{2x}+\frac{1}{4}e^{x}\right]_{0}^{1} = \left[\frac{1}{2}\left(\frac{1}{3}e^{3x}-e^{x}\right)\right]_{0}^{1} = = \frac{1}{2}\left(\frac{1}{3}e^{3}-e^{1}\right) - \frac{1}{2}\left(\frac{1}{3}e^{0}-e^{0}\right)$$

M1 $\int e^{px} dx = qe^{px}$ at least once and correct use of the limits 0 and 1

$$= \left(\frac{\mathrm{e}^3}{6} - \frac{\mathrm{e}}{2} + \frac{1}{3}\right) \,\mathrm{A1}$$

Any exact equivalent (allow e¹) but all like terms collected but isw following a correct answer.

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE