4728 Mark Scheme January 2010

4728 Mechanics 1

1 i	$v = 4.2 + 9.8 \times 1.5$	M1	Uses $v = u + gt$
1	$v = 18.9 \text{ ms}^{-1}$.	A1	18.9(15) from $g = 9.81$
	v = 10.5 ms .	[2]	10.5(15) Holli g = 5.01
ii	$s = 4.2 \times 1.5 + 9.8 \times 1.5^{2}/2 \text{ or}$ $18.9^{2} = 4.2^{2} + 2 \times 9.8s$	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	$18.9 = 4.2 + 2 \times 9.88$ s = 17.325 m	A1	Accept 17.3
	5 - 17.525 M	[2]	_
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$	M1	$18.9^2 = u^2 + 2 \times 9.8 \times 5$
	$v = 16.1 \text{ ms}^{-1}$	A1	$u = 16.1 \text{ ms}^{-1}$.
		[2]	Accept answers close to 16.1 from correct
			working
2 i	Resolves a force in 2 perpendicular	M1	Diagram for vector addition/subtraction
	directions		
	Uses Pythagoras	DM1	Uses Cosine Rule
	$R^2 = (12 + 19\cos 60)^2$	A1	$R^2 = 12^2 + 19^2 -$
	$+(19\sin 60)^2$	A1	$2 \times 12 \times 19 cos 120$
	R = 27.1 N	A1	R = 27.1
	$\{R = \sqrt{((19+12\cos 60)^2 + (12\sin 60)^2}) = 27.1\}$	[5]	
<u></u>	TD: 1:1.: 1.6	3.61	Fid. D.d.
ii	Trig on a valid triangle for correct angle	M1	Either Pythagoras or vector add/sub triangle
	$\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc	A1	$sin\theta/19 = sin120/(27.1)$ etc
	Angle is 37.4°, 37.5°	A1	
		[3]	
3ia	$+/-(9m + 2 \times 0.8)$ { $+/-(3.5 \times 0.8 - 2 \times 0.8)$ }	B1	Before mom, or mom change Q, OK with g
Ju	$+/-(-3.5m + 3.5 \times 0.8)$ { $+/-(9m + 3.5m)$ }	B1	After mom, or mom change P, OK with g
	$+/-(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$	M1	Equates moms, or changes, accept with g
	m = 0.096 kg	A1	Do not award if g used
ib		[4]	
	+/-0.096(9+/-3.5) <i>OR</i> +/-0.8(3.5 -2)	M1	Using before & after speeds of P or Q, no g
	+/-1.2 kgms ⁻¹	A1ft	ft $12.5 \times cv(0.096)$
	-	[2]	
ii	(0.8+0.4)v or $0.8v + 0.4v$	M1	Using Q and R common speed after, no g
	$3.5 \times 0.8 + 0.4 \times 2.75 = (0.8 + 0.4)v$	A1	2.8 + 1.1 = 1.2v
	$v = 3.25 \text{ ms}^{-1}$	A1	
		[3]	
4ia	0.3gcos 60 and 0.3gsin60	B1	Accept use of " $m = 0.1 \text{ kg}$ " for M1 and
	0.4gcos60 and 0.4gsin60	B1	0.1gcos60 (B1) 0.1gsin60 (B1)
	Calculates either relevant difference	M1	
	Perp = 0.1gcos60 and Para = +/-0.1gsin60	A1	= 0.49 and = 0.849 (accept 0.85 and 0.84)
		[4]	
ib	$0.1 g \sin 60 = \mu 0.1 g \cos 60$	M1	$F = \mu R, F > R > 0$
	$=1.73 \ (=\sqrt{3})$	A1	From correct R, F values
		[2]	

4728 Mark Scheme January 2010

4 ii	0.5g - T = 0.5a T - 0.4g = 0.4a $a = 1.09 \text{ ms}^{-2}$ T = 4.36 N	M1 A1 B1 B1 [4]	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0. But award M1 for T-0.4g = 0.4×1.09 etc later Both equations correct
5 i	11 = 3 + 20a 8 = 3 + (11-3)t/20 t = 12.5 (a = 0.4)	M1 M1 A1 [3]	Uses $v = u + at$, no zero terms Their a>0. $t/20 = (8-3)/(11-3)$ is M1M1
ii	$s(A,20) = 8 \times 20 \ (=160)$ $s(B,20) = (3+11) \times 20/2 =$ $3 \times 20 + 0.4 \times 20^2/2 \ (=140)$ $8T = (3+11) \times 20/2 + 11 \times (T-20)$ or $(160 - 140) = 11t - 8t$ $T = 26 \ 2/3$	B1 B1 M1 A1 A1 [5]	Or $s(A) = 8T$ or as stage of $s(B)=(3+11)\times 20/2 + 11\times (T-20)$ 3 part equation balancing distances Accept 26.6 or 26.7
iii		B1 B1 B1 [3]	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear. Single valued graphs graphs intersect and continue
6 i	$a = 2 \times 0.006t - 0.18$ a = 0.012t - 0.18	M1 A1 [2]	Differentiates v (not v/t) Award for unsimplified form, accept +c, not +k
ii	$0.012t - 0.18 = 0$ $t = 15$ $0.006 \times 15^{2} - 0.18 \times 15 + k = 0.65$ $k = 2$ AG	M1* A1 D*M1 A1 A1 [5]	Sets a = 0, and solves for t Substitutes t(v(min)) in v(t)
iii	$s = 0.006t^{3}/3 - 0.18t^{2}/2 + 2t (+c)$ $(s = 0.002t^{3} - 0.09t^{2} + 2t (+c))$ $t = 0, s = 0 \text{ hence } c = 0$ $L = 0.002 \times 28.4^{3} - 0.09 \times 28.4^{2} + 2 \times 28.4$ $L = 30.0 \text{ m}$	M1A1 B1 M1 A1 [5]	Integrates v (not multiplies by t). Award if +c omitted, accept kt Explicit, not implied (or uses limits 0, 28.4) Substitutes 28.4 or 14.2 in s(t), (and k=2) Accept a r t 30(.0), accept +c

4728 Mark Scheme January 2010

7 i	$(Fr =) 0.15 \times 600g\cos 10$ (Wt cmpt =) 600gsin10	B1 B1	Implied by $Fr = 0.15 \times 600g\cos 10 \ (=868.6)$
	$600 \times 0.11 = T - 0.15 \times 600g\cos 10 - 600g\sin 10$	M1	N2L. T with at least 1 resolved forces and 600×0.11
	(66 = T - 868.6 – 1021) T = 1960 N	A1 A1	1955.6
	1 – 1700 IV	[5]	1733.0
ii a	$a(up) = +/-(600g\sin 10 + .15 \times 600g\cos 10)/600$	M1	2 resolved forces and 600a or "unit mass"
	$a(up) = +/-3.15 \text{ ms}^{-2}$ AG	A1 [2]	Disregard sign, accept 3.149
b	$UP v^2 = 2 \times 0.11 \times 10$	M1	
~	v = 1.48 when cable breaks	A1	Correct, need not be accurate
	t = 1.48/3.149	M1	Or $1.48 = 0 + 3.15t$
	(t = 0.471 time for log to come to rest)		
	$s = 1.48^2/(2 \times 3.149)$	M1	
	s = 0.349 distance for log to come to	A1	Correct, need not be accurate
	rest		
	DOWN	D.1	0.254
	$a(down) = (600gsin10 - 0.15 \times 600gcos10)/600$	B1	= 0.254
	$10 + 0.349 = 0.254t^2/2$	M1	Needs a < 3.15 , s>10. Or $V^2 =$
	t = 9.025	A1	2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate
	T = 9.023 T = (9.025 + 0.471) = 9.5 s	A1 A1	Accept 9.49
	1 - (3.023 + 0.471) - 9.3 8	[9]	Αιτερί 7.47