

Mark Scheme (Results) Summer 2014

IAL Chemistry (WCH04/01) General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are **in the world. We've been involved in education for over 1**50 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code IA038356* All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be **prepared to award zero marks if the candidate's respons**e is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		1

Question	Correct Answer	Reject	Mark
Number			
2	Α		1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	D		1

Question	Correct Answer	Reject	Mark
numper			
5	C		1

Question	Correct Answer	Reject	Mark
Number			
6(a)	Α		1

Question Number	Correct Answer	Reject	Mark
6 (b)	В		1

Question	Correct Answer	Reject	Mark
Number			
7(a)	D		1

Question	Correct Answer	Reject	Mark
Number			
7(b)	С		1

Question Number	Correct Answer	Reject	Mark
8	Α		1

Question Number	Correct Answer	Reject	Mark
9	С		1

Question Number	Correct Answer	Reject	Mark
10	В		1
Question	Correct Apswor	Poioct	Mark

11	В		1
Number			
Question	Correct Answer	Reject	Mark

Question	Correct Answer	Reject	Mark
12	В		1

Question Number	Correct Answer	Reject	Mark
13	Α		1

Question Number	Correct Answer	Reject	Mark
14	В		1

Question Number	Correct Answer	Reject	Mark
15 (a)	с		1

Question	Correct Answer	Reject	Mark
Number			
15(b)	Α		1

Question Number	Correct Answer	Reject	Mark
16	С		1

Number			4
Question	Correct Answer	Reject	Mark

Total for Section A = 20 marks

Section B

Question Number	Acceptable Answers	Reject	Mark
18(a)	C ₁₀ H ₁₈ O	superscripts	1
	ALLOW any order i.e. C ₁₀ OH ₁₈ /H ₁₈ C ₁₀ O /H ₁₈ O C ₁₀ /OC ₁₀ H ₁₈ / OH ₁₈ C ₁₀		
	IGNORE C ₉ H ₁₇ CHO and other structural formulae as working		
	COMMENT Allow numbers not as subscripts e.g.C10H180		
	Structural formula without correct molecular formula will not score.		

more than one	1
indicated	
i	ndicated

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	Stand alone marks First mark restricted / barrier to rotation around/due to C=C/ Π bond ALLOW no/lack of/inhibits (free) rotation around/due to C=C/ Π bond (1) Second mark two different atoms/groups attached to each C in C=C /each C in C=C must not have two groups the same attached to it OR 4 different atoms/groups attached to C=C ALLOW 2 highest priority/molecular mass/atomic number atoms/groups on opposite sides (of C=C) is the <i>E</i> isomer ALLOW 2 highest priority/molecular mass/atomic number atoms/groups on the same side (of C=C) is the <i>Z</i> isomer ALLOW correct diagrams to show any of these points (1)	Just 'no rotation' without reference to C=C molecule does not rotate molecules/compounds attached to C atoms	2

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	circle around double bond as shown ALLOW any clear indication of the correct double bond or a circle around either of the two carbon atoms in this bond. ALLOW the circle being extended to the adjacent carbon atoms attached to the C=C.	both C=C bonds circled the circle extended to include the C=O and/or C-H bond(s) on the right	1

Question Number	Acceptable Answers		Reject	Mark
18(d)	Any reagent and matching observ from	(1) vation (1)	Just an observation not linked to a reagent	2
	reagent Fehling's (solution and heat/boil)	observation (blue solution) to red / red-brown/brown /orange and precipitate		
	and heat/boil)	(blue solution) to red / red-brown/brown /orange and precipitate silver mirror		
	/ammoniacal silver nitrate (and warm)	or grey/black/silver and ppt (orange) to		
	potassium/sodium dichromate((VI)) and sulfuric acid (and warm) or acidified dichromate((VI) ions and warm) or acidified (potassium/sodium) dichromate((VI))	green/blue		
	ALLOW Schiff's reagent	pink/purple/magenta		
	ALLOW correct formu	Ilae/ names I ent /2,4- DNPH etc		
		UNICE IN TUNENS TEAYENT	l	

Question Number	Acceptable Answers	Reject	Mark
18(e)(i)	In (e)(i) and (e)(ii), penalise any structure other than skeletal only once, in the item where it appears first	any structure with an OH group	1
	L I H		
	OR		
	And a second		
	ALLOW any unambiguous skeletal formula showing the aldehyde (with or without the H in CHO)		

Question Number	Acceptable Answers	Reject	Mark
Number 18(e)(ii)	Acceptable Answers In (e)(i) and (e)(ii), penalise any structure other than skeletal only once, in the item where it appears first 4444 Allow 4444	any structure without both C=C the <i>E</i> isomer	1
	ALLOW O for OH		
	ALLOW -O-H for OH		
	ALLOW the OH on either side of the structure		
	ALLOW just 1 H shown on the C with the OH attached		
	ALLOW any unambiguous skeletal formula showing the alcohol (with or without the 2Hs on end C)		

(Total for Question 18 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	First marking point - Orders H_2O_2 first/1st order/order 1 H^+ zero/0 order/order 0bothcorrect(1)		3
	Explanations Second marking point H ₂ O ₂ - as [H ₂ O ₂] doubles and [H ⁺] and [I ⁻] stay the same/other concentrations stay the same/using experiments 1 and 2 (this could be shown on the table) and the rate doubles/working to show this	Either/both explanations if inconsistent with order(s) stated above	
	ALLOW reverse argument ie as [H ₂ O ₂] halves and [H ⁺] and [I ⁻] stay the same/other concentrations stay the same/using experiments 1 and 2 (this could be shown on the table) and the rate halves/working to show this (1)		
	Third marking point H ⁺ - as [H ⁺] doubles/halves and [H ₂ O ₂] and [I ⁻] stay the same/other concentrations stay the same/using experiments 1 and 3 (this could be shown on the table) Note – do not penalise omission of this if it has been penalised in second marking point		
	and the rate stays the same /working to show this OR As [H ⁺] doubles and [H ₂ O ₂] halves and [I ⁻] stays the same /using experiments 2 and 3 (this could be shown on the table) (also see note above)		
	rate halves due to [H ₂ O ₂] change so rate does not change due to [H ⁺]/working to show this ALLOW reverse argument (1)		

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	First marking pointFirst/1st order /order 1Second marking point-consequential on correct order	Any other order scores zero overall	2
	graph shows rate is (directly) proportional to [I ⁻] OR as [I ⁻] increases, the rate increases proportionally OR as [I ⁻] doubles, the rate doubles	iodine/l ₂ Penalise once only in (ii) and (iii)	
	ALLOW graph (of rate against [I ⁻]) is a straight line (through the origin) /gradient is constant ALLOW Increase in rate is constant (1)		

Question Number	Acceptable Answers	Reject	Mark
19(a) (iii)	$rate/r/R = k[H_2O_2][I^-]$	[l ₂]	1
	ALLOW $[H_2O_2]^1[I^-]^1$		
	ALLOW [H ⁺] ⁰		
	ALLOW upper case K		
	consequential on their orders from (a)(i) and (ii)		

Question Number	Acceptable Answers		Reject	Mark
19(a) (iv)	2.8 x 10 ⁻⁵	(1)		2
()	dm ³ mol ⁻¹ s ⁻¹	(1)		
	ALLOW units in any order			
	Note: value and units are consequential on their rate equation from (a)(iii) and must be consistent Ignore SF unless 1.			
	Comment If zero order wrt [I ⁻], $k = 1.4 \times 10^{-5} \text{ s}^{-1}$			

Question	Acceptable Answers	Reject	Mark
Number			
19(b)(I)	(Rate determining step) Any balanced equation that has just 2NO₂ on the LHS (1)	NO ₂ or any multiple other than 2 of NO ₂ on LHS for first mark only	2
	(Step 2) Any balanced equation for which the two steps combine to the overall equation/double the overall equation (1)		
	Examples of matching pairs:		
	$2NO_2 \rightarrow N_2O_4$ $N_2O_4 + CO \rightarrow NO + NO_2 + CO_2/$ $N_2O_4 + 2CO \rightarrow 2NO + 2CO_2$		
	OR 2NO - \rightarrow 2NO + O		
	$2CO + O_2 \rightarrow 2CO_2/CO + 1/2O_2 \rightarrow CO_2$		
	OR		
	$2NO_2 \rightarrow N_2 + 2O_2$		
	$N_2 + 2O_2 + CO \rightarrow NO + NO_2 + CO_2$		
	$2NO_2 \rightarrow 2NO + 2O$		
	$NO + 2O + CO \rightarrow NO_2 + CO_2$		
	$2\text{NO}_2 \rightarrow \text{NO} + \text{NO}_3$ $2\text{CO} + \text{NO}_3 \rightarrow 2\text{CO}_2 + \text{NO}$		
	ALLOW NO ₂ + NO ₂ on LHS NOTE		
	$NO_2 \rightarrow NO + 1/2O_2$ then		
	$CO + 1/2O_2 \rightarrow CO_2$		
	Does not score the first mark but scores 1 for the consequential second equation		
	IGNORE state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	In (b)(ii) penalise incorrect/missing units but allow J/mol K and J/mol/K and lower case k		2
	FIRST CHECK THE FINAL ANSWER, If answer is -13.3 J mol ⁻¹ K ⁻¹ or -0.0133 kJ mol ⁻¹ K ⁻¹ , award 2 marks		
	13.3 J mol ⁻¹ K ⁻¹ /0.0133 kJ mol ⁻¹ K ⁻¹ (sign omitted)		
	-13.3 / -0.0133 (units omitted) (1)		
	If none of the above answers is given First mark for correct data used (1)		
	Second mark value, sign and units consequential on incorrect entropy value(s) used in the correct expression		
	$(\Delta S^{\circ}_{\text{system}} =) [210.7 + 213.6] - [197.6 + 240.0]$ (1) IGNORE SF except 1SF		

Question Number	Acceptable Answers		Reject	Mark
19(b)(iii)	FIRST CHECK THE FINAL ANSWER, If final answer is +0.75839 kJ mol ⁻¹ K ⁻¹ +758.39 J mol ⁻¹ K ⁻¹	(2) (2)	-0.75839 / -758.39 with no units	2
	EITHER $(\Delta S^{e}_{surroundings} =) -\Delta H OR - (-226) T 298$	(1)		
	= 0.75839 kJ mol ⁻¹ K ⁻¹ Second mark is for answer with correct unit	(1)		
	OR (ΔS^{e} surroundings =) $-\Delta H$ OR-(-226000) T 298	(1)		
	= 758.39 J mol ⁻¹ K ⁻¹ Second mark is for answer with correct unit	(1)		
	ALLOW -0.75839 kJ mol ⁻¹ K ⁻¹ /-758.39 J mol ⁻¹ K ⁻¹	(1)		
	IGNORE SF except 1 SF			

Question	Acceptable Answers	Reject	Mark
19(b)(iv)	First marking point $(\Delta S^{\circ}_{total} = \Delta S^{\circ}_{system} + \Delta S^{\circ}_{surroundings})$ (= -13.3 + 758.39) / (-0.0133 + 0.75839) $= (+)745.09 \text{ J K}^{-1} \text{ mol}^{-1}/(+)0.74509 \text{ kJ K}^{-1} \text{ mol}^{-1}$ (1)	(ii) and (iii) added together with different units for first mark only	2
	TE on (ii) and (iii) added together with the same units IGNORE SF except 1 SF IGNORE units, even if incorrect Second marking point		
	(sign is positive so) reaction is (thermodynamically) feasible / spontaneous (1)		
	ALLOW feasible / will occur / reaction goes / it reacts (at 298 K) reactants thermodynamically unstable		
	COMMENT If value for ΔS^{e}_{total} is negative, then allow consequential mark for (sign is negative so) reaction is not feasible / not spontaneous / will not occur / reaction / it does not take place (at 298 K)		

(Total for Question 19 = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	$H_{3}C \xrightarrow{CH_{2}} \delta^{+} \delta^{-} \xrightarrow{H_{3}C} H_{2} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} H_{2} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} H_{2} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} H_{2} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{H_{3}C} \xrightarrow{CH_{2}} \delta^{-} \xrightarrow{L_{2}} \delta^{-} \xrightarrow{L_{2}} \xrightarrow{H_{3}C} \xrightarrow{CH_{2}} \xrightarrow{L_{2}} \delta^{-} \xrightarrow{L_{2}} L_{$	Penalise incorrect number of C atoms in propanal once only	4
	$ \xrightarrow{H_3C} H_3C \xrightarrow{CH_2} H_2C \xrightarrow{H_2C} H_2C $		
	Lone pairs are not needed Allow C ₂ H ₅		
	First mark dipole on C=O $H_3C - CH_2$ $\delta + \delta - C = O$	Full charges	
	H ⁻ (1)		
	 Second mark arrow from anywhere on CN⁻ to carbon of C=O/space between the CN⁻ and carbon of C=O and arrow from C=O bond to O ALLOW CN⁻ without showing the triple bond/charge anywhere on CN ALLOW arrow from C=O bond to O to show the formation of charged canonical form (C⁺-O⁻) followed by attack of CN⁻ (1) 	Half arrows starting from KCN/HCN /CN ⁸⁻	
	Third markcorrect intermediate with full negative charge(1)	C-NC bond	
	Fourth mark arrow from oxygen to H and from H-CN bond to C of CN ALLOW arrow from oxygen to H ⁺		
	ALLOW arrow from oxygen to H of H2O and fromH-OH bond to OH(1)		

Question Number	Acceptable Answers		Reject	Mark
20(a)(ii)	nucleophilic (1))		2
	addition (1))		
	Note Do not allow 'addition' if $S_N 1 / S_N 2$ are included in the answer.			
	Words can be in either order			

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	If name and formula given, both must be correct CH ₃ CH ₂ COCI / propanoyl chloride /		1
	CH3CH2C ² CI A-C-C-C ² CI		
	ALLOW skeletal formula/any combination of displayed/structural formula Ignore C ₃ H ₅ OCI Comment Molecular formula without correct structural formula or name will not score.		

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	If name and formula given, both must be correct methylamine / CH_3NH_2 / NH_2CH_3 $H \rightarrow C \rightarrow NH_2 / H \rightarrow C \rightarrow N \rightarrow H$	methyl amide	1
	Ignore CH_5N/CNH_5 Note Allow the mark if the answer to this item is written by Step 3 in the flow chart on page 19		

Question	Acceptable Answers	Reject	Mark
Number			
20(b)(iii)	4/four (peaks)		1

Question	Acceptable Answers	Reject	Mark
Number			
20(c)	CH ₃ CH ₂ COOH + CH ₃ CH(OH)CH ₃ \Rightarrow CH ₃ CH ₂ COOCH(CH ₃) ₂ + H ₂ O CH ₃ CH ₂ COOCH(CH ₃) ₂ (1) rest of equation correct including H ₂ O, conditional on correct structure for ester (1) ALLOW full displayed formulae or a combination of structural and displayed formulae ALLOW missing bracket around OH ALLOW \rightarrow instead of \Rightarrow ALLOW H ⁺ above the arrow or eqm sign OR on both sides of the equation. Note: If candidate uses propan-1-ol/C ₃ H ₇ OH allow 1 mark for a completely correct equation CH ₃ CH ₂ COOCH + CH ₃ CH ₂ CH ₂ OH \Rightarrow CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ + H ₂ O OR CH ₃ CH ₂ COOCH + C ₃ H ₇ OH \Rightarrow CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ + H ₂ O	molecular formulae penalise missing H once only any other alcohol or acid used for both marks	2

Question Number	Acceptable Answers	Reject	Mark
20(d)	First marking point propan-1-ol/correct structural/displayed/skeletal formula/		2
	ALLOW propanol and primary alcohol $/1^{\circ}/1^{\circ}$ (1)ALLOW C_3H_7OH (1)		
	Second marking point – stand alone because the IR spectrum shows an absorption at 3750-3100 (cm ⁻¹) due to the OH bond/OH group /alcohol/hydroxy(I) OR no peak at around 1700 / 2700-2775 (cm ⁻¹) so it is	hydroxide	
	not an aldehyde(1)Note - these could be shown on the spectrum as labelled peaks		
	ALLOW any wavenumber or range within the ranges given above		
	IGNORE any other peaks mentioned/references to bend/stretch/intensity		

(Total for Question 20 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	$(K_{p} =) \frac{P_{HI}^{2}}{P_{H_{2}} \times P_{I_{2}}}$ ALLOW P_{HI}^{2} ALLOW lower or upper case p /pp/curved brackets	square brackets expressions without p/pp/P/PP to show partial pressure	1
	IGNORE state symbols even if incorrect		
	IGNORE missing x		

Question Number	Acceptable Answers				Reject	Mark	
21(a)*		Ha		2HI			5
(ii)	initial	1	1	0			
	mol						
	eqm mol	0.21	0.21	1.58			
	partial	<u>0.21 x 5</u>	<u>0.21 x 5</u>	<u>1.58 x 5</u>			
	pressure	2	2	2			
		= 0.525	= 0.525	= 3.95			
	Kp	$\frac{3.95^2}{0.525^2} =$	56.6/57 no	units			
	First mar	K					
	eqm mol o	$f H_2 = 0.21$			(1)		
	Second m	ark					
	eqm mol o	f HI = 1.58	(see note	at end)	(1)		
	Third man	'k			(4)		
	conseque	ntial on the	either wori eir equilibriu	king or answe Im moles	er (1)		
	Fourth m	ark					
	correct val	ue (56.6/57	') for ${\it K}_{ m p}$ with	h or without	working (1)		
	consequential on their partial pressures and their expression for K_p in (a)(i)						
	Fifth mark 'no units' stated / working to show that units cancel / statement that units cancel ALLOW - /atm ⁰ or similar indication of no units ALLOW units based on expression for K_p in (i) or the expression they have used in the calculation in (ii) (1)						
	Note Only away working t If 0.21 mo then partia $K_p = 14/14$	rd 5 marks to show the I H ₂ (1) and al pressures 4.2 (1) no	if partial em 0.79 mol 1000 mol 1000 mol 1000 mol 1000 mol 1000 mol 1000 mol 10000 mol 10000 mol 100000000000000000000000000000000000	pressures a HI (0) , 68 and HI =	re stated or 3.264 (1)		
	lf 0.21 mo then partia K _p = 4 (1)	I H ₂ (1) and I pressures no units ($10.42 \text{ mol } \text{H}_2/\text{I}_2 = 1.2$	HI (0) , 5 and HI = 2	2.5 (1)		
	Alternativ If initial P(Eqm P(H ₂) P(HI) = 5- IGNORE S	re method H ₂) and P (I ₂) = and P (I ₂) = (2 x 0.525) SF except 15	for marks 2) = 2.5 (atr 2.5x0.21 = = 3.95 (1) SF	2 and 3 m) = 0.525(atm)	(1)		

Question	Acceptable Answers	Reject	Mark
21(b)	No effect because (there are) equal numbers of (gas) mole(cule)s on each side of the equation	Just 'equal numbers of mole(cule)s'	1

Question Number	Acceptable Answers		Reject	Mark
21(c)(i)	First mark $(\Delta H \text{ is negative/exothermic so})$ $-\Delta H/T \text{ gets less positive}$ ALLOW decreases OR $(\Delta H \text{ is negative/exothermic so})$ $\Delta S_{\text{surroundings}}$ gets less positive ALLOW decreases	(1)		2
	Second mark (so, since $\Delta S_{total} = -\Delta H/T + \Delta S_{system}$) ΔS_{total} decreases Mark independently	(1)		
	No TE on incorrect $\Delta S_{surroundings}$ Ignore comments based on K_{p}			

Question Number	Acceptable Answers		Reject	Mark
21(c)* (ii)	First mark $lnK = \Delta S_{total}/R$ OR $K = e^{\Delta S_{total}/R}$ OR $\Delta S_{total} = RlnK$ OR ΔS_{total} is (directly) proportional to lnK Second mark	(1)	ΔS _{total} is (directly) proportional to K	2
	K_p decreases and yield (of HI) decreases consequential on their ΔS_{total} in (c)(i)	(1)	Just 'equilibrium position moves to the left' without	
	Ignore comments based on Le Chatelier's principle		reference to yield and kp	

(Total for Question 21 = 11 marks)

TOTAL FOR SECTION B = 49 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Proton donor/donates protons OR H ⁺ ion donor/donates H ⁺ ions Ignore just releases H ⁺ ions or protons.		1

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	$CH_{3}CH(OH)COOH + H_{2}O \rightleftharpoons CH_{3}CH(OH)COO^{-} + H_{3}O^{+}$ OR $CH_{3}CH(OH)CO_{2}H + H_{2}O \rightleftharpoons CH_{3}CH(OH)CO_{2}^{-} + H_{3}O^{+}$	HA and A ⁻ once only in (a)(ii) and (a)(iii) Penalise	1
	ALLOW \rightarrow for \rightleftharpoons	missing H once only in (a) (ii) and	
	$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$	(a)(III)	
	ALLOW CH ₃ CH(OH)CO ₂ H \rightleftharpoons CH ₃ CH(OH)CO ₂ ⁻ + H ⁺		
	Ignore state symbols even if incorrect Ignore missing bracket around OH		

Question Number	Acceptable Answers	Reject	Mark
22(a) (iii)	$(\mathbf{K}_{a} =)$ $[CH_{a}CH(OH)COO^{-}][H_{a}O^{+}]$	H_2O in expression	1
	$[CH_{3}CH(OH)COOH]$ OR $[CH_{3}CH(OH)CO_{2}^{-}][H_{3}O^{+}]$ $[CH_{3}CH(OH)CO_{2}H]$	Lack of square brackets	
	OR [CH ₃ CH(OH)COO ⁻][H ⁺] [CH ₃ CH(OH)COOH]	HA and A ⁻ once only in (a)(ii) and (a)(iii)	
	OR $\frac{[CH_3CH(OH)CO_2^-][H^+]}{[CH_3CH(OH)CO_2H]}$ Note Allow any of these for the mark, even if a different equation using H ⁺ /H ₃ O ⁺ has been given in (a)(ii)	Penalise missing H once only in (a)(ii) and (a)(iii)	

Question	Acceptable Answers	Reject	Mark
22(a) (iv)	Comment Allow [H ₃ O ⁺], [HA], [A ⁻] as alternative formula throughout Calculation Ignore sf, except 1 sf, throughout First check the final answer If pH = 2.34, award the first 3 marks If pH ≠ 2.34, award marks as follows		5
	ROUTE 1 $K_a = 10^{-3.86} = 1.3804 \times 10^{-4} (mol dm^{-3})$ (1)	Incorrect units for K_a and/or [H ⁺]	
	$[H^{+}] = \sqrt{K_{a}}[CH_{3}CH(OH)COOH]$ = $\sqrt{1.38 \times 10^{-4} \times 0.15}$ = 4.5504 x 10 ⁻³ (mol dm ⁻³) (1) TE on their value for K_{a}	max 2 for calculation	
	$pH = -log_{10}[H^+] = -log_{10} 4.55 \times 10^{-3}$ = 2.3420/2.34 (1) TE on their value for [H ⁺] provided pH>1 and < 7 (pH = 0.12 if use 3.86 for K_{a} , scores 2)		
	ROUTE 2 $[H^+] = \sqrt{K_a}[CH_3CH(OH)COOH]$ $pH = \frac{1}{2} pK_a - \frac{1}{2} log[CH_3CH(OH)COOH]$ (1) $= \frac{1}{2} 3.86 - \frac{1}{2} log 0.15$ (1) = 2.34 (1) TE on not halving (4.68 is worth 1 mark)		
	Assumption 1 $[H^+] = [CH_3CH(OH)COO^-]$ OR	$[H^+]_{initial} = [H^+]_{equilibrium}/$	
	no H ⁺ from the (ionization of) water/ionization of water is negligible OR		
	H ⁺ is (only) from the acid (1)		
	Assumption 2 Ionization/dissociation of the (weak) acid is negligible / very small / insignificant OR [CH ₃ CH(OH)COOH] _{initial} =		
	$[CH_{3}CH(OH)COOH]_{equilibrium}$ OR $[CH_{3}CH(OH)COOH]_{equilibrium} = 0.15 \text{ (mol dm}^{-3}\text{)}$ OR		
	[H ⁺]/[CH ₃ CH(OH)COO ⁻] << [CH ₃ CH(OH)COOH] OR [CH ₃ CH(OH)COOH]/acid concentration remains		

ROUTE 3 First check the final answer If pH = 2.35, award the first 4 marks			
If pH \neq 2.35, award marks as follows			
$K_{\rm a} = 10^{-3.86} = 1.38 \text{ x } 10^{-4} \text{ (mol dm}^{-3}\text{)}$	(1)		
$[H^{+}]^{2} = \mathbf{K}_{a}([CH_{3}CH(OH)COOH] - [H^{+}] \\ [H^{+}]^{2} = 1.38 \times 10^{-4} \times (0.15 - [H^{+}] $	(1)		
$[H^+] = 4.48 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$ ecf on their value for K_a	(1)		
$pH = -log_{10}[H^+]$ = -log_{10} 4.48 x 10 ⁻³ = 2.35 TE on their value for [H ⁺]	(1)		
Assumption $[H^+] = [CH_3CH(OH)COO^-]$ OR		[H ⁺] _{initial} = [H ⁺] _{equilibrium}	
OR H ⁺ is (only) from the acid	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	If answer is 13.2, with or without working, award 2 marks (13/13.17 score 1 mark, answer not to 1 dp)		2
	$[H^{+}] = \frac{1.0 \times 10^{-14}}{0.15}$ = 6.67 x 10 ⁻¹⁴ (mol dm ⁻³) (1)		
	$pH = -log_{10}6.67 \times 10^{-14}$ = 13.176 = 13.2 (1)	Answer not given to 1 dp	
	TE on their $[H^+]$, provided pH > 7 and < 14		
	OR		
	pOH = 0.824 (1) pH = 14-0.824 = 13.176 = 13.2 (1)	Answer not given to 1 dp	

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Curve continues and finishes at any pH between 12 and 13.2 ALLOW this as standalone if they have no pH in (b)(i) or their pH is ≤ 10	finishing at >13.2 or <12 curves that 'dip' by more	1
	TE on their pH in (b)(i) if it is > 10	than 1 small square at the end stopping before 45 cm ³	

Question Number	Acceptable Answers	Reject	Mark
Question Number 22(b)(iii)	Acceptable Answers Indicator and colour change named indicator (1) matching colour change (1) matching colour change (1) phenol red yellow to red/pink (1) OR (1) phenol red yellow to red/pink (1) OR (1) phenolphthalein colourless to red/pink /magenta (1) ALLOW bromothymol blue yellow to blue ALLOW correct colour change for thymolphthalein even if the vertical section does not continue to 10.6 for 1 mark. NO TE for colour change from any other indicator Justification pH range (of indicator) lies (completely) in the vertical jump (on the titration curve) OR Indicator will change colour in the vertical section of the graph OR pH range of indicator and pH range of vertical section of the graph stated as long as they overlap ALLOW pK _{in} (±1) is in the vertical jump OR pK _{in} is nearest to the pH at the end/equivalence point ALLOW Indicator will change colour at the	Reject Universal indicator loses all 3 marks	Mark
	Indicator will change colour at the end/equivalence point ALLOW (because it is a) titration of a weak acid with a strong base (1)		

Question	Acceptable Answers	Reject	Mark
Number			
22(b)(iv)	the concentration of sodium lactate is 0.075 mol dm ⁻³ when equal amounts of acid and base have been mixed OR (only sodium lactate is present and it is the) pH at the equivalence/end point/ halfway up the vertical section of the curve ALLOW explanation or an equation to show that lactate ions react with water to produce an alkaline solution (1)	pH of buffer solution	2
	any number or range within 7.5 – 9.5 (1)	7/7.0	

Question Number	Acceptable Answers	Reject	Mark
22(b)* (v)	Comment Allow [HA], [A ⁻] as alternative formulae throughout		4
	First mark – statement or equations showing the buffer solution buffer solution contains a large amount/reservoir /excess of a weak acid and its conjugate base/salt	Reservoir of H ⁺ ions	
	OR		
	a large amount/reservoir /excess of lactic acid and lactate ions/formulae for lactic acid and lactate ions		
	OR		
	$CH_{3}CH(OH)COOH \Rightarrow CH_{3}CH(OH)COO^{-} + H^{+} / CH_{3}CH(OH)COOH + H_{2}O \Rightarrow CH_{3}CH(OH)COO^{-} + H_{3}O^{+}$	→ in equation	
	and CH ₃ CH(OH)COO ⁽⁻⁾ Na ⁽⁺⁾ \rightarrow CH ₃ CH(OH)COO ⁻ + Na ⁺	⇒ in	
	Ignore definitions of a buffer solution (1)	equation	
	Second mark – identifying which species react with the added acid and alkali $CH_3CH(OH)COOH$ reacts with added alkali/OH ⁻ ions $OR CH_3CH(OH)COOH + OH^- \rightarrow$ $OR OH^-$ ions react with H ⁺ /H ₃ O ⁺ ions and $CH_3CH(OH)COO^-$ reacts with added acid/H ⁺ ions / H_3O^+ ions $OR CH_3CH(OH)COO^- + H^+/H_3O^+ \rightarrow$		
	OR		
	(pH=pK _a + lg <u>[salt]</u>) [acid] small additions of acid/alkali have little/no effect on lg <u>[salt]</u> so pH hardly changes/no change [acid]		
	ALLOW Ratio [acid]: [salt]/[salt]: [acid] only changes a little so pH hardly changes/no change		
	ALLOW HA and A ⁻ in formulae/equations(1)CommentThis mark may be given from the equations		

Third mark – ionic equation for OH ⁻
CH ₃ CH(OH)COOH + OH ⁻ \rightarrow CH ₃ CH(OH)COO ⁻ + H ₂ O
ALLOW
$H^{+} + OH^{-} \rightarrow H_2O / H_3O^{+} + OH^{-} \rightarrow 2H_2O $ (1)
Fourth mark – ionic equation for H ⁺
$CH_3CH(OH)COO^- + H^+ \rightarrow CH_3CH(OH)COOH$
OR $CH_3CH(OH)COO^- + H_3O^+ \rightarrow CH_3CH(OH)COOH + H_2O$
(1)
Note Only penalise non ionic equations e.g. using NaOH, HCI once only.
Comment
Two completely correct ionic equations scores marks 2,3 and 4

Question Number	Acceptable Answers	Reject	Mark
22(c)	$\begin{array}{rcl} CH_{3}CH(OH)COO^{-} + CH_{3}COOH_{2}^{+} \\ \textbf{both} & \text{needed for the mark} \\ \hline \textbf{ALLOW} \\ [CH_{3}CH(OH)COO]^{-} + [CH_{3}COOH_{2}]^{+} \\ \hline \textbf{ALLOW} \\ [CH_{3}COOHH]^{+} / CH_{3}COOHH^{+} & \text{for the ethanoic acid ion} \\ CH_{3}CH(OH)CO_{2}^{-} & \text{for the lactic acid ion} \\ \end{array}$		1

(Total for Question 22 = 21 marks)

TOTAL FOR PAPER = 90 marks