

Mark Scheme (Results)

Summer 2013

GCE Statistics 4 (6686/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037008 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
1. (a)	P(X > 1.690) = 0.975	
	P(X > a) = 0.025	M1
	<i>a</i> = 16.013	A1
		(2)
(b)	Upper critical value of $F_{6,4} = 15.21$	B1
	Lower critical value of $F_{6,4} = \frac{1}{9.15} = 0.109$	B1
		(2)
		[4]
	Notes	
(a)	M1 for using 0.025	
(b)	2^{nd} B1 either $\frac{1}{9.15}$ or awrt 0.109	

Question Number	Scheme	Marks
2.		
(a)	$\frac{29 \times 0.36}{45.722} < \sigma^2 < \frac{29 \times 0.36}{16.047}$	M1B1,B1
	$0.228 < \sigma^2 < 0.651$	M1 A1
		(5)
(b)	Since 0.495 lies in the interval or 0.228 < 0.495 < 0.651 yes	B1ft B1ftd
		(2)
		[7]
	Notes	
(a)	1 st M1 use of $\frac{29 \times s^2}{\chi^2}$ (May use $\frac{s^2}{F_{29,\infty}}$ or $s^2 \times F_{29,\infty}$)	
	$\left(\text{Based on } \frac{s^2}{\sigma^2} = F_{29,\infty}\right)$	
	1 st B1 45.722 $\left(\text{ using } \frac{s^2}{F_{29,\infty}} \text{ and } s^2 \times F_{29,\infty} \right)$	
	2^{nd} B1 16.047 (may use $F_{29,\infty} = 1.4686$)	
	2 nd M1 correct answer using their χ^2 value (correct using their $F_{29,\infty}$)	
	A1 awrt 0.228 and awrt 0.651 (awrt 0.245 and awrt 0.529)	
(b)	ft their interval	

Question Number	Scheme	Marks
3. (a)	X~Po(2)	
	Size = P($X \ge 3/\lambda = 2$)	
	= 1 - 0.6767	M1
	= 0.3233 awrt	A1 (2)
(b)	Power = $1 - P(0) - P(1) - P(2)$	M1
	$= 1 - e^{-\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2 e^{-\lambda}}{2!}$	A1
	$=1-\frac{1}{2}e^{-\lambda}\left(2+2\lambda+\lambda^{2}\right)$	A1 cso (3)
(c)	r = 0.58 $s = 0.76$	B1, B1
		(2)
(d)		
	0.9	
	0.8	
		B1ft
	0.7	points
	0.6	B1ft curve
	0.4	
	0.3	
		(2)
	0.2	
	0.1	
	λ	
(e)	$\lambda > 3.1$ allow numbers in range 3.1-3.2	B1 (1) [10]
	Notes	
(a)	M1 for correct expression for size using Po(2)	
(b)	1 st M1 for a correct expression in terms of probabilities. Allow 1- $P(X \le 2)$ or 1- $P(X \le 3)$	
	1^{st} A1 for correct equation in λ	
	2 nd A1 cso	
(c)	SC if both correct but not to 2dp award B1B0	
(d)	1 st B1ft points	
	2 nd B1ft curve (or straight lines) through points	

Question Number	Scheme	Marks
4. (a)(i)	Ardo $s^2 = \frac{1}{6}(1257.78 - 7(13.4)^2)$	M1
	= 0.143 awrt 0.143	A1
(ii)	Bards $0.261 = \frac{6 \times 0.143 + 8 \times s^2}{7 + 9 - 2}$	M1
	$s^2 = 0.349$	A1 (4)
(b)	$H_0: \sigma_1^2 = \sigma_2^2, \ H_1: \sigma_1^2 \neq \sigma_2^2$	B1
	critical values $F_{8,6} = 4.15$ $\left(\frac{1}{F_{8,6}} = 0.241\right)$	B1
	$\frac{s_2^2}{s_1^2} = \frac{0.349}{0.143} = \text{awrt } 2.44 \left(\frac{s_1^2}{s_2^2} = \frac{0.143}{.349} = 0.41\right)$	M1; A1
	Since 2.44 (0.424) is not in the critical region we accept H_0 and conclude there is	Alcso
	no evidence that the two variances are different	(5)
(c)	H ₀ : $\mu_B - \mu_A = 0.9$; H ₁ : $\mu_B - \mu_A > 0.9$ both	B1
	CR: $t_{14}(0.05) > 1.761$ 1.761	B1
	$t = \pm \frac{14.8 - 13.4 - 0.9}{\sqrt{0.261(\frac{1}{7} + \frac{1}{9})}} = \pm 1.94$	M1 A1
	awrt ± 1.94	A1
	Since 1.94 is in the critical region we reject H_0 and conclude that the mean strength	A1 ft
	of rods from <i>Bards</i> is more than 0.9 kN than that from <i>Ardo</i> .	(6)
(a)(i)	Notes M1 for attempt to calculate s^2	[15]
(a)(l) (ii)	M1 use of correct formula for s_p^2	
	A1 awrt 0.349 / 0.3495	
(b)	1 st B1 allow $H_0: \sigma_1 = \sigma_2, H_1: \sigma_1 \neq \sigma_2$	
	M1 For use of a correct formula	
(c)	B1 must use μ . If not use A and B it must be clear which is which	
	M1 for attempt at correct test statistic – matching their hypotheses	
	1 st A1 correct test statistic for their hypotheses	
l		

Question Number	Scheme	Marks
5.		
	D = Paper I score – paper II score	
	$H_0: \mu_D = 1 H_1: \mu_D > 1$	B1
	<i>d</i> : 4, 1, 7, 3, -1, 1, 9, 2	M1
	$\overline{d} = 3.25$; $s^2 = \frac{162 - 8 \times 3.25^2}{7} = 11.07$ (s = 3.32)	M1;M1
	$t_7 = \frac{3.25 - 1}{3.32 / \sqrt{8}} = 1.9126$ awrt 1.91	M1A1
	$t_7(5\%) = 1.895$	B1
	There is evidence to support the teacher's belief or the score on paper I is more than one mark higher than on paper II	A1 ft (8) [8]
	Notes	
(a)	1 st M1 for attempting differences	
	2^{nd} M1 for attempting \overline{d}	
	3 rd M1 for attempting s_d or s_d^2 , correct expression with their $\sum d^2$ and \overline{d} or correct calculation (to 2 sf or better)	
	4 th M1 for use of $\frac{\overline{d}-1}{s/\sqrt{8}}$, ft their values.	
	1 st A1 awrt 1.91	
	2 nd B1 for 1.895	
	2 nd A1 contextual conclusion ft their values.	
	SC if they use a 2 sample test they may get the first B1 for H ₀ : μ_{I} . $\mu_{II} = 1$ and H ₁ : μ_{II} . $\mu_{II} > 1$	

Question Number	Scheme	Marks
6.		
(a)	H ₀ : $\mu = 500$ [accept ≤ 500], H ₁ : $\mu > 500$	B1
	$t = \frac{502 - 500}{\sqrt{5.6} / \sqrt{12}} = 2.93$	M1A1
	critical value $t_{11}(1\%) = 2.718$	B1
	sufficient evidence that the mean amount of water is more than 500 ml	A1 ft (5)
(b)	H ₀ : $\sigma^2 = 9 \text{ or } (\sigma = 3), H_1: \sigma^2 < 9 \text{ or } (\sigma < 3)$	B1
	test statistic $\frac{11s^2}{\sigma^2} =, \frac{61.6}{9} = 6.84$	M1 A1
	critical values $\chi^2_{11}(1\%)$ lower tail=3.053	B1
	Insufficient evidence to suggest that the standard deviation of the amount of water is less than 3	A1cso (5)
		[10]
	Notes	
(a)	M1 attempt at correct statistic	
	1 st A1 awrt 2.93	
	2 nd A1ft correct contextual comment including amount , water and 500	
(b)	$1^{\rm st}$ B1 Both hypotheses, must use σ	
	2 nd B1 for critical value, this should be compatible with their alternative hypothesis	
	3 rd A1cso cso. contextual comment, include standard deviation/ variance and water	

Question Number	Scheme	Marks
7.		
(a)	$\frac{CV - 202}{2/\sqrt{n}} = -2.3263$	M1 B1
	$CR \le 202 - \frac{4.6526}{\sqrt{n}}$ or $202 - 2.3263\sqrt{\frac{4}{n}}$	A1
		(3)
(b)	2 4.6526	
	$\frac{CV - 200}{2 / \sqrt{n}} = 1.6449 \text{or} \frac{2 - \frac{4.6526}{\sqrt{n}}}{\frac{2}{\sqrt{n}}} > 1.6449$	M1 B1
	$CV = 200 + \frac{3.2898}{\sqrt{n}}$	
	Solving simultaneously	
	$2 = \frac{7.9424}{\sqrt{n}} \qquad \text{or } \sqrt{n} - \frac{4.6526}{2} > 1.6449$	M1
	$\sqrt{n} = 3.9712$	A1
	n = 15.77	A1
	n = 16	A1
		(6)
		[9]
	Notes	
	Note only lose one B1 for not reading from points table. This should be deducted the first time it is done	
(a)	1^{st} M1 use correct formula equal a z value	
	A1 allow use of <	
(b)	1^{st} M1 use correct formula equal a z value	
	B1 – if B mark lost in part (a) allow 1.64 or 1.65	
	1 st A1 awrt 3.97 may be implied by an answer of 15.77 or an answer of 16 and using 1.6449	
	2 nd A1 awrt 15.8 may be implied by an answer of 16	

(b) $E\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}W_{i}\right)$ $= \mu$ B1 $Var\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}Var(W_{1} + W_{2} + + W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1,B1d (3) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right) - (\overline{w})^{2}\right] = \frac{1}{n}\times n\left(\sigma^{2} + \mu^{2}\right) - E(\overline{w}^{2})$ M1 $Var(\overline{w}) = E(\overline{w}^{2}) - [E(\overline{w})]^{2} \Rightarrow E(\overline{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ M1 Hence expected value is $\left(\sigma^{2} + \mu^{2}\right) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ A1 Bias = $\left(-\right)\frac{\sigma^{2}}{n}$ A1 (4) (5) (6) $\frac{n}{(n-1)}U$ B1 (1)	Question Number	Scheme	Marks
$E\left[\sum_{i=1}^{n} W_{i}\right] = n\mu$ $E\left[W_{i}^{2}\right] = Var(W_{i}) + (E(W_{i}))^{2}$ $= \sigma^{2} + \mu^{2}$ $E\left[\sum_{i=1}^{n} W_{i}^{2}\right] = E(W_{i}^{2} + W_{2}^{2} +, W_{n}^{2})$ $= n(\sigma^{2} + \mu^{2})$ (4) (b) $E\left[\frac{1}{n}\sum_{i=1}^{n} W_{i}\right] = \frac{1}{n}E\left[\sum_{i=1}^{n} W_{i}\right]$ $= \mu$ $Var\left[\frac{1}{n}\sum_{i=1}^{n} W_{i}\right] = \frac{1}{n^{2}}Var(W_{i} + W_{2} + + W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1,B1d (3) (4) (5) $E\left[\frac{1}{n}(\sum w_{i}^{2}) - (\overline{w})^{2}\right] = \frac{1}{n}xn(\sigma^{2} + \mu^{2}) - E(\overline{w}^{2})$ $Var(\overline{w}) = E(\overline{w}^{2}) - (E(\overline{w}))^{2} \Rightarrow E(\overline{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ H1 Hence expected value is $(\sigma^{2} + \mu^{2}) \cdot \frac{\sigma^{2}}{n} + \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	8.		
$= \sigma^{2} + \mu^{2}$ $E\left(\sum_{i=1}^{n} W_{i}^{2}\right) = E(W_{i}^{2} + W_{2}^{2} + \dots W_{n}^{2})$ $= n\left(\sigma^{2} + \mu^{2}\right)$ $\left(b\right)$ $E\left(\frac{1}{n}\sum_{i=1}^{n} W_{i}\right) = \frac{1}{n} E\left(\sum_{i=1}^{n} W_{i}\right)$ $= \mu$ $Var\left(\frac{1}{n}\sum_{i=1}^{n} W_{i}\right) = \frac{1}{n^{2}} Var(W_{i} + W_{2} + \dots + W_{n})$ $= \frac{1}{n^{2}} n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ $B1.B1d$ (3) $Var\left(\overline{w}\right) = E\left(\overline{w}^{2}\right) - [E(\overline{w})]^{2} \Rightarrow E\left(\overline{w}^{2}\right) - \mu^{2} = \frac{\sigma^{2}}{n}$ $M1$ Hence expected value is $\left(\sigma^{2} + \mu^{2}\right) - E(\overline{w}^{2})$ $Hence expected value is \left(\sigma^{2} + \mu^{2}\right) - \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n} A1 (4) \left(\frac{n}{(n-1)}U\right) B1 (1)$	(a)	$E\left(\sum_{i=1}^{n} W_{i}\right) = n\mu$	B1
$E\left(\sum_{i=1}^{n} W_{i}^{2}\right) = E(W_{1}^{2} + W_{2}^{2} + \dots + W_{n}^{2})$ $= n\left(\sigma^{2} + \mu^{2}\right)$ (b) $E\left(\frac{1}{n}\sum_{i=1}^{n} W_{i}\right) = \frac{1}{n} E\left(\sum_{i=1}^{n} W_{i}\right)$ $= \mu$ $Var\left(\frac{1}{n}\sum_{i=1}^{n} W_{i}\right) = \frac{1}{n^{2}} Var(W_{i} + W_{2} + \dots + W_{n})$ $= \frac{1}{n^{2}} n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1.B1d (3) (4) $Var\left(\overline{w}\right) = E\left(\overline{w}^{2}\right) - (\overline{w})^{2} = \frac{1}{n} \times n\left(\sigma^{2} + \mu^{2}\right) - E(\overline{w}^{2})$ $Var\left(\overline{w}\right) = E\left(\overline{w}^{2}\right) - [E(\overline{w})]^{2} \Rightarrow E(\overline{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ H1 Hence expected value is $\left(\sigma^{2} + \mu^{2}\right) \cdot \frac{\sigma^{2}}{n} \cdot \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ A1 Bias = $\left(-\right)\frac{\sigma^{2}}{n}$ (d) $\frac{n}{(n-1)}U$ B1 (1)		$\mathbf{E}\left(W_{i}^{2}\right) = \mathbf{Var}\left(W_{i}\right) + \left(\mathbf{E}(W_{i})\right)^{2}$	M1
$\mathbf{r} = n\left(\sigma^{2} + \mu^{2}\right) \qquad \qquad$		•	A1
(b) $E\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}W_{i}\right)$ $= \mu$ $Var\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}Var(W_{1}+W_{2}++W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1,B1d (3) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right) - (\overline{w})^{2}\right] = \frac{1}{n}\times n\left(\sigma^{2}+\mu^{2}\right) - E(\overline{w}^{2})$ M1 $Var(\overline{w}) = E(\overline{w}^{2}) - [E(\overline{w})]^{2} \Rightarrow E(\overline{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ M1 Hence expected value is $\left(\sigma^{2}+\mu^{2}\right) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ A1 Bias = $\left(-\right)\frac{\sigma^{2}}{n}$ A1 (4) (5)			
(b) $E\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}W_{i}\right)$ $= \mu$ B1 $Var\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}Var(W_{1} + W_{2} + + W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1,B1d (3) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right) - (\bar{w})^{2}\right] = \frac{1}{n}\times n(\sigma^{2} + \mu^{2}) - E(\bar{w}^{2})$ M1 $Var(\bar{w}) = E(\bar{w}^{2}) - [E(\bar{w})]^{2} \Rightarrow E(\bar{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ M1 Hence expected value is $(\sigma^{2} + \mu^{2}) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ A1 Bias = $(-)\frac{\sigma^{2}}{n}$ A1 (4) (5) (6) $\frac{n}{(n-1)}U$ B1 (1)		$= n(\sigma^2 + \mu^2)$	
$= \mu$ $Var\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}Var(W_{1} + W_{2} + + W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ $B1,B1d$ (3) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right) - (\overline{w})^{2}\right] = \frac{1}{n}\times n\left(\sigma^{2} + \mu^{2}\right) - E(\overline{w}^{2})$ $Var(\overline{w}) = E(\overline{w}^{2}) - [E(\overline{w})]^{2} \Rightarrow E(\overline{w}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ $Hence expected value is (\sigma^{2} + \mu^{2}) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n} A1 Bias = (-)\frac{\sigma^{2}}{n} A1 (4) B1 (1)$	(b)	$\mathbf{E}\left(\frac{1}{2}\sum_{i=1}^{n}W_{i}\right)=\frac{1}{2}\mathbf{E}\left(\sum_{i=1}^{n}W_{i}\right)$	(4)
$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}\operatorname{Var}(W_{1} + W_{2} + + W_{n})$ $= \frac{1}{n^{2}}n\sigma^{2}$ $= \frac{\sigma^{2}}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$ B1.B1d (3) $\operatorname{E}\left[\frac{1}{n}\left(\sum w_{i}^{2}\right) - (\overline{w})^{2}\right] = \frac{1}{n}\times n\left(\sigma^{2} + \mu^{2}\right) - \operatorname{E}(\overline{w}^{2})$ M1 $\operatorname{Var}\left(\overline{w}\right) = \operatorname{E}\left(\overline{w}^{2}\right) - [\operatorname{E}(\overline{w})]^{2} \Rightarrow \operatorname{E}\left(\overline{w}^{2}\right) - \mu^{2} = \frac{\sigma^{2}}{n}$ M1 Hence expected value is $\left(\sigma^{2} + \mu^{2}\right) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n}$ A1 $\operatorname{Bias} = \left(-\right)\frac{\sigma^{2}}{n}$ A1 (4) $\left(\frac{n}{(n-1)}U\right)$ B1			B1
(c) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right)-\left(\overline{w}\right)^{2}\right] = \frac{1}{n} \times n\left(\sigma^{2}+\mu^{2}\right)-E(\overline{w}^{2})$ $M1$ $Var\left(\overline{w}\right) = E\left(\overline{w}^{2}\right)-\left[E(\overline{w})\right]^{2} \Rightarrow E\left(\overline{w}^{2}\right)-\mu^{2}=\frac{\sigma^{2}}{n}$ $M1$ $Hence expected value is \left(\sigma^{2}+\mu^{2}\right)\cdot\frac{\sigma^{2}}{n}-\mu^{2}=\frac{(n-1)\sigma^{2}}{n} A1 Bias = \left(-\right)\frac{\sigma^{2}}{n} A1 (4) (1)$		$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{1}{n^{2}}\operatorname{Var}\left(W_{1}+W_{2}++W_{n}\right)$	
(c) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right)-\left(\bar{w}\right)^{2}\right] = \frac{1}{n} \times n\left(\sigma^{2}+\mu^{2}\right)-E(\bar{w}^{2})$ (3) $Var\left(\bar{w}\right) = E\left(\bar{w}^{2}\right)-\left[E(\bar{w})\right]^{2} \Rightarrow E\left(\bar{w}^{2}\right)-\mu^{2}=\frac{\sigma^{2}}{n}$ (A1 Hence expected value is $\left(\sigma^{2}+\mu^{2}\right)\cdot\frac{\sigma^{2}}{n}-\mu^{2}=\frac{(n-1)\sigma^{2}}{n}$ (4) $Bias = \left(-\right)\frac{\sigma^{2}}{n}$ (4) (d) $\frac{n}{(n-1)}U$ (B1 (1)		$=\frac{1}{n^2}n\sigma^2$	
(c) $E\left[\frac{1}{n}\left(\sum w_{i}^{2}\right)-\left(\overline{w}\right)^{2}\right]=\frac{1}{n}\times n\left(\sigma^{2}+\mu^{2}\right)-E(\overline{w}^{2})$ M1 $Var\left(\overline{w}\right)=E\left(\overline{w}^{2}\right)-\left[E(\overline{w})\right]^{2} \Rightarrow E\left(\overline{w}^{2}\right)-\mu^{2}=\frac{\sigma^{2}}{n}$ M1 Hence expected value is $\left(\sigma^{2}+\mu^{2}\right)\cdot\frac{\sigma^{2}}{n}-\mu^{2}=\frac{(n-1)\sigma^{2}}{n}$ A1 Bias = $\left(-\right)\frac{\sigma^{2}}{n}$ A1 (4) (4) B1 (1)		$=\frac{\sigma^2}{n}, \rightarrow 0 \text{ as } n \rightarrow \infty$	B1,B1d
$E\left[\frac{n}{n}\left(\sum w_{i}\right)-(w)\right] = \frac{-\pi}{n}\pi\left(\sigma + \mu\right)-E(w)$ $Var\left(\overline{w}\right) = E\left(\overline{w}^{2}\right) - \left[E(\overline{w})\right]^{2} \Rightarrow E\left(\overline{w}^{2}\right) - \mu^{2} = \frac{\sigma^{2}}{n}$ $Hence expected value is \left(\sigma^{2} + \mu^{2}\right) \cdot \frac{\sigma^{2}}{n} - \mu^{2} = \frac{(n-1)\sigma^{2}}{n} Bias = \left(-\right)\frac{\sigma^{2}}{n} (4) \frac{n}{(n-1)}U B1 (1)$		n	(3)
Hence expected value is $(\sigma^2 + \mu^2) \cdot \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$ Bias = $(-)\frac{\sigma^2}{n}$ (d) $\frac{n}{(n-1)}U$ B1 (1)	(c)	$\mathbf{E}\left[\frac{1}{n}\left(\sum w_i^2\right) - \left(\overline{w}\right)^2\right] = \frac{1}{n} \times n\left(\sigma^2 + \mu^2\right) - \mathbf{E}(\overline{w}^2)$	M1
$\mathbf{H} = \mathbf{h}$		$\operatorname{Var}(\overline{w}) = \operatorname{E}(\overline{w}^2) - \left[\operatorname{E}(\overline{w})\right]^2 \implies \operatorname{E}(\overline{w}^2) - \mu^2 = \frac{\sigma^2}{n}$	M1
(d) $\frac{n}{(n-1)}U$ (4) B1 (1)		Hence expected value is $(\sigma^2 + \mu^2) - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$	A1
(d) $\frac{n}{(n-1)}U$ (4) B1 (1)		Bias = $(-)\frac{\sigma^2}{n}$	A1
(n-1) (1)			(4)
(1)	(d)	$\frac{n}{(n-1)}U$	B1
			(1)
			[12]

	Notes	
(a)	1 st M1 using $E(W_i^2) = Var(W_i) + (E(W_i))^2$	
(b)	2^{nd} B1 stating $\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}\right) = \frac{\sigma^{2}}{n}$	
	3 rd B1 dependent on 2 nd B1, stating $\frac{\sigma^2}{n} \to 0$ as $n \to \infty$	
(c)	1^{st} M1 attempting correct method with their answer to part (a) – award for	
	$\left(\sigma^2 + \mu^2\right) - E\left(\frac{1}{n}\sum_{i=1}^n w_i\right)^2$	
	2^{nd} M1 using Var $(\overline{w}) = E(\overline{w}^2) - [E(\overline{w})]^2$	
(d)	Allow $\frac{n}{(n-1)}\sigma^2$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA037008 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

