

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

0123456789

CHEMISTRY 0620/04

Paper 4 Theory (Extended)

For Examination from 2016

SPECIMEN PAPER

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

© UCLES 2014

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 The following table gives information about six substances.

substance	melting point / °C	boiling point / °C	electrical conductivity as a solid	electrical conductivity as a liquid
Α	839	1484	good	good
В	-188	–42	poor	poor
С	776	1497	poor	good
D	-117	78	poor	poor
E	1607	2227	poor	poor
F	– 5	102	poor	good

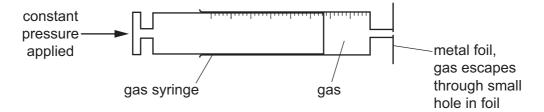
(a)	Which substance could be a metal?	[1]
(b)	State all the substances that are liquid at room temperature?	[1]
(c)	Which substance could have a macromolecular structure similar to that of silicon(IV) oxide	
(d)	Which substance could be propane?	[1]
(e)	Which substance could be sodium chloride?	[1]
	[Total	

2 The table gives the composition of three particles.

particle	number of protons	number of electrons	number of neutrons		
Α	15	15	16		
В	15	18	16		
С	15	15	17		

(a)	Wh	at is the evidence in the table for each of the following?	
	(i)	Particle A is an atom.	
			[1]
	(ii)	A, B and C are all particles of the same element.	
			[1]
	(iii)	Particles A and C are isotopes of the same element.	
			[2]
(b)	(i)	What is the electronic structure of particle A ?	
			[1]
	(ii)	Is element A , a metal or a non-metal? Give a reason for your choice.	
			[1]

[Total: 6]


3	Kinetic theory	explains	the p	properties	of	matter	in	terms	of	the	arrangement	and	movement	of
	particles.													

(a)	Nitrogen is a	a gas	at room	temperature.	Nitrogen	molecules,	N_2 ,	are	spread	far	apart	and
	move in a ra	ndom	manner	at high speed.								

(i)	Draw the electronic structure of a nitrogen molecule.
	Show only the outer electron shells.

		[2]
	(ii)	Compare the movement and arrangement of the molecules in solid nitrogen to those in nitrogen gas.
		[3]
` ,	the Use	ealed container contains nitrogen gas. The pressure of the gas is due to the molecules of gas hitting the walls of the container. It the kinetic theory to explain why the pressure inside the container increases when the perature is increased.
		[2]

The following apparatus can be used to measure the rate of diffusion of a gas.

The following results were obtained.

gas	temperature /°C	rate of diffusion in cm³/min
nitrogen	25	1.00
chlorine	25	0.63
nitrogen	50	1.05

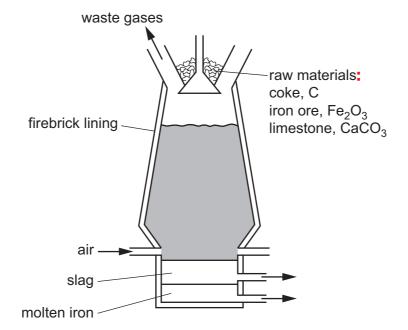
(c)	(i)	Explain why nitrogen gas diffuses faster than chlorine gas.	
			[2]
	(ii)	Explain why the nitrogen gas diffuses faster at the higher temperature.	
			[1]

[Total: 10]

			6	
4	Chr	omi	um is a transition element.	
	(a)	(i)	State two differences in the physical properties of chromium and sodium.	
				•••
			[2	<u>']</u>
		(ii)	State two differences in the chemical properties of chromium and sodium.	
			[2	<u>']</u>
	(b)	Chr	romium is used to electroplate steel objects. The diagram shows how this could be done.	
			lead anode object to be plated chromium(III) sulfate(aq)	
		(i)	Give two reasons why steel objects are plated with chromium.	
			[2	. <u>.</u> 2]
		(ii)	The formula of the chromium(III) ion is Cr^{3+} and of the sulfate ion is SO_4^{2-} . Give the formula of chromium(III) sulfate.	е
		(iii)	Write the ionic half-equation for the reaction at the negative electrode (cathode).	·]
			[2	2]

(iv) A colourless gas, which relights a glowing splint, is formed at the positive electrode

[1]


© UCLES 2014 0620/04/SP/16

State the name of this gas.

(anode).

(v)	During electroplating, it is necessary to add more chromium(III) sulfate but during copper plating using a copper anode, it is not necessary to add more copper(II) sulfate.
	Explain this difference.
	[2
	[Total: 12

5 Iron is extracted from its ore, hematite, in the blast furnace.

Describe the reactions involved in this extraction.

Include one equation for a redox reaction and one for an acid/base reaction.
[{

[Total: 5]

BLANK PAGE

6 Soluble salts can be made using a base and an acid.

(a)	Complete	te this method of preparing dry crystals of the soluble	salt
	cobalt(II)	() chloride-6-water from the insoluble base cobalt(II)	carbonate.

step 1
Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.
step 2
step 3
-4 4
step 4
[4]
[+]

(b) (i) 5.95g of cobalt(II) carbonate were added to 40 cm³ of hydrochloric acid, concentration 2.0 mol/dm³.

Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess.

$$CoCO_3 + 2HCl \rightarrow CoCl_2 + CO_2 + H_2O$$

 $CoCl_2 + 6H_2O \rightarrow CoCl_2.6H_2O$

maximum yield:

	number of moles of HCl used =
	number of moles of CoCl ₂ formed =
	number of moles of $CoCl_2.6H_2O$ formed =
	mass of one mole of $CoCl_2.6H_2O = 238g$
	maximum yield of CoCl ₂ .6H ₂ O =g
	to show that cobalt(II) carbonate is in excess:
	number of moles of HCl used = (use your value from above)
	mass of one mole of $CoCO_3 = 119g$
	number of moles of CoCO ₃ in 5.95 g of cobalt(II) carbonate =[5]
(ii)	Explain how these calculations show that cobalt(II) carbonate is in excess.
	[1]
	[Total: 10]

7 Iodine reacts with chlorine to form dark brown iodine monochloride.

$$I_2 + Cl_2 \rightarrow 2ICl$$

This reacts with more chlorine to give yellow iodine trichloride. An equilibrium forms between these iodine chlorides.

$$ICl(I) + Cl_2(g) \rightleftharpoons ICl_3(s)$$

dark brown yellow

(a)	What do you understand by the term equilibrium?	
		[- .
(b)	When the equilibrium mixture is heated, it becomes a darker brown colour. Suggest if the reverse reaction is endothermic or exothermic. Give a reason for your choic	e.
		[1]
(c)	The pressure on the equilibrium mixture is decreased.	
	(i) How would this affect the position of equilibrium? Give a reason for your choice.	
	It would move to the	
	reason	
		[1]
	(ii) Describe what you would observe.	
		[1]

(d) Calculate the overall energy change for the reaction between iodine and chlorine using the bond energy values shown.

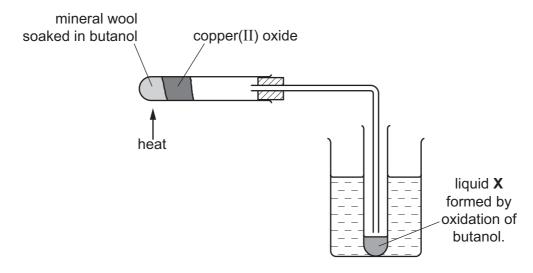
$$I_2 + Cl_2 \rightarrow 2ICl$$

Bond	Energy / kJ per mol
I–I	151
C <i>l</i> –C <i>l</i>	242
I–C <i>l</i>	208

Show your working.

[3]

(e) Draw a labelled energy level diagram for the reaction between iodine and chlorine using the information in (d).

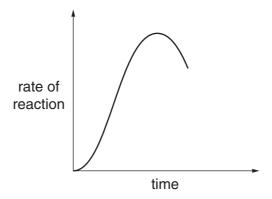

[2]

[Total: 10]

8

The alcohols form an homologous series.
(a) Give three characteristics of an homologous series.
[3]
(b) The following two alcohols are members of an homologous series and they are isomers.
$CH_3 - CH_2 - CH_2 - CH_2 - OH$ and $(CH_3)_2CH - CH_2 - OH$
(i) Explain why they are isomers.
[2]
(ii) Deduce the structural formula of another alcohol which is also an isomer of these alcohols.

(c) Copper(II) oxide can oxidise butanol to liquid \mathbf{X} , whose pH is 4.

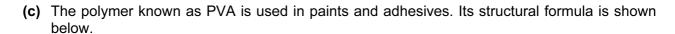

(i) Give the name of another reagent which can oxidise buta	tanol
---	-------

		[1]
(ii)	Which homologous series does liquid X belong to?	
		[1]
iii)	State the formula of liquid X .	
		[1]

(d) The alcohol ethanol can be made by fermentation. Yeast is added to aqueous glucose.

$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

Carbon dioxide is given off and the mixture becomes warm, as the reaction is exothermic. The graph shows how the rate of reaction varies over several days.



(i)	Suggest a method of measuring the rate of this reaction.	
		[2]
(ii)	Why does the rate initially increase?	
		[1]
iii)	Suggest two reasons why the rate eventually decreases.	
		[2]

[Total: 14]

BLANK PAGE

The	ere are two types of polymerisation, addition and condensation.	
(a)	Explain the difference between these two types of polymerisation.	
		[2]
		L
(b)	Some plastics, formed by polymerisation, are non-biodegradable.	
	Describe two pollution problems that are caused by non-biodegradable plastics.	
		[2]

$$\begin{array}{cccc} -\mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH} - \\ & | & | \\ & \mathsf{OCOCH}_3 & \mathsf{OCOCH}_3 \end{array}$$

Deduce the structural formula of its monomer.

[1]

(d) A condensation polymer can be made from the following monomers.

Draw the structural formula of this polymer.

[3]

[Total: 8]

	2	He	helium	4	10	Ne	neon	20	18	Ā	argon	40	36	궃	krypton	84	54	×e	xenon	<u>5</u>	퉏	radon	1				
					6	ш	fluorine	19	17	15	chlorine	35.5	35	Ŗ	bromine	80	53	Н	iodine	127	¥	astatine	1				
>					8	0	oxygen	16	16	တ	sulfur	32	34	Se	selenium	79	52	Te	tellurium 4.20	94	Po	polonium	1	116	۲۸	livermorium	1
>					2	z	nitrogen	14	15	፲	phosphorus	31	33	As	arsenic	75	51	Sp	antimony	771	: <u>:</u>	bismuth	209				
≥					9	ပ	carbon	12	14	:S	silicon	28	32	g	germanium	73	20	S	.≘ 7	87	Pb	lead	207	114	14	flerovium	ľ
≡					2	В	boron	1	13	Ν	aluminium	27	31	Ga	gallium	20	49	In	indium	2 2	<u>1</u> L	thallium	204				
													30	Zu	zinc	65	48	ප	cadmium	21.1	H	mercury	201	112	ნ	copernicium	J
													29	Cn	copper	64	47	Ag	silver	90 2	Au	plog	197	111	Rg	oentgenium	1
Group													28	z	nickel	59	46	Pd	palladium	282	T	platinum	195	110	Ds	darmstadtium re	1
စ်													27	ပိ	cobalt	59	45	뫈	rhodium	201	۱	iridium	192	109	Ĭ	meitnerium	1
	_	I	hydrogen	\sigma									26	Pe	iron	26	4	Ru	ruthenium	101	SO	osmium	190	108	Hs	hassium	j
															_						Re					bohrium	1
				3	er	pol		nass					24	ర్	chromium	52	42	Мо	molybdenum	36	>	tungsten	184	106	Sg	seaborgium	1
				Key	atomic number	atomic symbo	name	relative atomic mass						>		51					٦a					dubnium	1
					at	ato		relati					22	F	titanium	48	40	Zr	zirconium	72	Ξ	hafnium	178	104	꿒	rutherfordium	1
													21	Sc	scandium	45	39	>	yffrium	57_71	lanthanoids			89–103	actinoids		
=					4	Be	beryllium	6	12	Mg	magnesium	24	20	Ca	calcium	40	38	Š	strontium	256	Ba	barium	137	88	Ra	radium	1
_					3	ij	lithium	7	1	Na	sodium	23	19	¥	potassium	39	37	8	rubidium	25.	Cs	caesium	133	87	占	francium	J

71	: 3	Iutefium	175	103	۲	lawrencium	ľ	
70	χP	yfferbium	173	102	%		ľ	
69	T _m	thulium	169	101	PΜ	mendelevium	ľ	
88	山	erbinm	167	100	Fm	fermium	Ĺ	
67	운	holmium	165	66	Es	einsteinium	ľ.	
99	ò	dysprosium	163	98	ರ	californium	ľ	
65	Tb	terbium	159	26	Ř	berkelium	E	
64	b O	gadolinium	157	96	Cm	curium	ľ	
63	ВП	europium	152	98	Am	americium	Ĺ	
62	Sm	samarium	150	94	Pu	plutonium	Ĺ	
61	Pm	promethium	1	93	dN	neptunium	į.	
90	PN	neodymium	4	92	⊃	uranium	238	
50	g G	praseodymium	141	91	Ра	protactinium	231	
2,8	පී		140	6	H	thorium	232	
57	La	lanthanum	139	88	Ac	actinium	I.	
	spic				ro.			

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.