PH4

	Question	Marking details	Marks Available
1	(a)	The total momentum (of a system) is constant (must have total, sum, vector sum etc.) (1)	
		Provided no <u>external</u> [resultant] force (1)	
		e.g The momentum before and after a collision is the same - 0	
		When two particles collide the sum of momentum stays the same as long as no forces are involved - 1	2
	(b)	$\lambda = \frac{c}{f}$ i.e. rearranged or $E = hf = 2.13 \times 10^{-13} [J] (1)$	
		$p = \frac{h}{\lambda}$ used or $p = \frac{E}{c}$ quoted (1)	
		Final evidence $p = \frac{6.63 \times 10^{-34}}{9.35 \times 10^{-13}}$ or $p = \frac{2.128 \times 10^{-13}}{3 \times 10^8}$ (= 7.09 x 10 ⁻²²) (1)	3
	(c)	Reasonable attempt at cons of mom e.g. initial p of Ni = final p of Ni $\pm p$ of photon (1)	
		$2440 \ge 9.95 \ge 10^{-26} = 7 \ge 10^{-22} - 9.95 \ge 10^{-26} \lor (1)$	
		Answer = $4700 \text{ [m s}^{-1}\text{]}$ or slightly different dependent on (b) (1) ecf on p	3
		Question 1 Total	[8]

Question			Marking details	Marks Available
2	(a)		$\frac{1}{3}\rho \overline{c^2}V = nRT$ i.e. some sort of combining both equations (1) Realising $\rho = \frac{Nm}{V}$ (any mistakes in <i>N</i> and <i>m</i> means max of 1/3) (1) (or equivalent steps) Clear algebra with no mistakes leading to $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$ or $\frac{1}{2}m\overline{c^2} = \frac{3}{2}\frac{R}{N_A}T$ (if it's difficult to follow don't award the mark - needs to be clear) (1)	3
	(b)	(i) (ii)	Mass of argon molecule = $6.3(08) \times 10^{-26}$ (1) Algebra or equivalent method $T = \frac{m\overline{c^2}}{3k}$ or $T = \frac{N_A m \overline{c^2}}{3R}$ (1) Answer = 605 [K] (1) ecf $\sqrt{\overline{c^2}} \propto \sqrt{T}$ or correct substitution of 1 210 K (ecf) and algebra (1)	3
			Answer = $630 \times \sqrt{2}$ or 891 [m s ⁻¹] (1)	2
			Question 2 Total	[8]

	Question		Marking details	Marks Available
3	(a)	(i)) Graph is straight line through origin [hence proportional] (1)	
			(accept acceleration is proportional to displacement)	2
			Negative gradient [hence direction ok] (1)	
		(ii)	Gradient calculated correctly i.e. $\frac{1}{0.028}$ or 36	
			(or k calculated from $ma = kx$ i.e. 7.14 N m ⁻¹) (1)	
			Gradient = angular velocity squared i.e. method explained	
			Or $f = \left(2\pi \sqrt{\frac{m}{k}}\right)^{-1}$ i.e. equation for T and $f = 1/T(1)$	
			Answer = $\frac{5.98}{2\pi} = 0.95$ [Hz] (1)	3
		(iii)	2π 1 m s ⁻² read off graph	1
			Or $6^2 \ge 0.028 = 1 \text{ [m s}^{-2} \text{]etc.}$	
		(iv)	Max speed = ωA or implied (= 0.167) (1)	
			$KE = \frac{1}{2}mv^2$ or implied (1)	
			Answer = $2.8 [mJ]$ (1) ecf	3
		(v)	$v = A\omega \cos\omega t \text{ used}$ or $\varepsilon = 0 \text{ stated}$ (1)	
			Rearrangement e.g. $\omega t = \cos^{-1} \frac{v}{A\omega}$ or implied (1)	
			Correct answer = $0.156[s]$ (1) ecf	3
	(b)		KE to PE or PE to KE (1)	
			PE is both GPE and EPE (1)	
			Energy gradually lost due to friction or air resistance or internal energy of spring/air etc.	
			Not sound, not heat by itself - needs more e.g. lost as heat to the air ok (1)	
			Detail of energy loss e.g. internal energy of air, KE of air particles	4
			Question 3 total	[16]

	Question		Marking details	Marks Available
4	(a)		$T = \frac{pV}{nR}$ seen or implied (1)	
			Evidence of 1 correct substitution (1)	
			Evidence of all 3 substituted correctly (1) A - $(0.500 \pm 0.002, 80000 \pm 2000)$ B - $(0.260 \pm 0.002, 235000 \pm 2000)$ C - $(0.260 \pm 0.002, 80000 \pm 2000)$	3
	(b)		$U = \frac{3}{2}nRT \text{ used } (1)$	
			Evidence of ΔT being used or differences in U being calculated (once) (1)	
			$AB = 31\ 500\ [J], BC = -\ 60\ 500\ [J], CA = 29\ 000\ [J]$ (1)	3
	(c)	(i)	AB approximated as a trapezium (accept triangle gives 19000J) (1)	
			$AB = -38\ 000\ [J]\ (1)$	
			AB \approx (-32 000 ± 3 000) J due to better method $\checkmark \checkmark \checkmark$ e.g. two trapezia or 2 triangles or square counting, or any attempt at integrating <i>pV</i> (unlikely) etc. (i.e. 2 marks for good method 1 mark for correct answer) (1)	3
		(ii)	BC = 0 (independent)	1
		(iii)	CA = 19 200 [J]	1
	(d)	(i)	$Q = \Delta U + W$ i.e. equation used (1)	
			Correct answer with their figures e.g. $31500 - 38000 = -6500$ (also ecf possible for $31500 + 38000 = 69500$) (1)	2
		(ii)	No time for heat transfer	1
			Question 4 Total	[14]

	Question		Marking details	Marks Available
5	(a)	(i) (ii) (iii)	$g = \frac{GM}{r^2} \text{ used } (1)$ Answer = 3.7 m s ⁻² or N kg ⁻¹ or equivalent (1) UNIT MARK $V_g = -\frac{GM}{r} \text{ used } (1)$ Answer = ± 9.02 [MJ kg ⁻¹] (1) ecf on km conversion Negative amount of work bringing mass from ∞ (accept no work done bringing from ∞ or system will do work or work is done in the other direction etc.)	2 2 1
	(b)	(i) (ii)	$PE = V_g \times m \text{ or implied (1)}$ $KE = \frac{1}{2}mv^2 \text{ used (1)}$ $Answer = 656 \text{ kJ} - 4.1 \text{ MJ} = -3.44 \text{ [MJ] (1)}$ $-\frac{GMm}{r} = -3.44 \text{ MJ (1)}$ $r = 2905 \text{ km (1)}$	3
			Height = 465 [km] (1) ecf Question 5 Total	3

•

	Question	Marking details	Marks Available
6	(a)	Arrows pointing towards charges similar to shown ✓✓ -2.40 nC	2
		Arrows pointing away from charges similar to shown ✓	
	(b)	$E = \frac{Q}{4\pi\varepsilon_0 r^2} \text{used} (1)$	
		The 2 vertical components cancel or no field into or out of page (1)	
		Pythagoras or trig e.g. $\sqrt{5^2 - 4^2} = 3$ or recognising 3,4,5 triangle (equivalent is to realise $\cos \theta = 3/5$ or $\theta = 53^\circ$ etc.) (1)	
		2 nC charge field x2 and x3/5 ecf (for horizontal components) (1)	
		Calculations all ok e.g. $8640 = 7200 \times 2 \times 3/5$ or equivalent shown (1)	5
	(c)	$V = \frac{Q}{4\pi\varepsilon_0 r} \text{used} (1)$	
		Attempt at adding all 3 potentials (1)	
		- 360 - 360 - 432 = - 1 152 V or JC^{-1} or equivalent (1) UNIT MARK	3
	(d)	Use of $PE = q\Delta V$ must be a change (1)	
		Rearrangement i.e. $v^2 = \frac{2 \times PE}{m}$ allow ecf on $V(1)$	
		Answer = $18.3 \times 10^{6} [\text{m s}^{-1}]$ (ecf only if a ΔV used) (1)	3
		Question 6 Total	[13]

Question			Marking details	Marks Available	
7	(a) (b)	(i)&(ii)	$T = 2\pi \sqrt{\frac{(1.4 \times 10^{10})^3}{6.67 \times 10^{-11} \times (1.6 \times 10^{29} + 3.7 \times 10^{27})}} $ (1) Answer = 3.15 x 10 ⁶ [s] or implied (3.19 x 10 ⁶ s if M_2 omitted) (1) 36.5 [days] (1) (36.9 if M_2 omitted gets 2/3) $r_1 = \frac{M_2}{M_1 + M_2} d$ used or $M_1 r_1 = M_2 r_2$ used (1) Star orbit radius = 0.032 x 10 ¹⁰ [m] (1) Planet orbit radius = 1.37 x 10 ¹⁰ [m] (1)	3	
	(c)	(i) (ii)	$v = \frac{2\pi r}{r}$ or $v = \omega r$ and $\omega = 2\pi f$ (1) $v = \frac{2\pi \times 0.032 \times 10^{10}}{3.15 \times 10^6} (= 631)$ (1) ecf $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ values substituted or not possible (1) Answer = 3.9 [pm] because mean radial speed unknown (1) Don't penalise using 2 x v if explained	2	
			Question 7 Total	[10]	

GCE PHYSICS MS - JANUARY 2014

© WJEC CBAC Ltd.

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>