

Mark Scheme (Results)

June 2014

GCE Chemistry (6CH04/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038322*
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1 (a)	D		1
		'	
Question Number	Correct Answer	Reject	Mark
1 (b)	С		1
			_
Question Number	Correct Answer	Reject	Mark
1 (c)	A		1
		·	<u> </u>
Question Number	Correct Answer	Reject	Mark
1 (d)	С		1
Question Number	Correct Answer	Reject	Mark
1 (e)	В		1
Question Number	Correct Answer	Reject	Mark
2(a)	A		1
Question Number	Correct Answer	Reject	Mark
2 (b)	В		1
		'	<u> </u>
Question Number	Correct Answer	Reject	Mark
2 (c)	D		1
2 (d)	С		1
Question Number	Correct Answer	Reject	Mark
3	A		1
Question Number	Correct Answer	Reject	Mark
4 (a)	С		1
		,	,
Question Number	Correct Answer	Reject	Mark
4 (b)	В		1
	•	•	

		I	T
Question	Correct Answer	Reject	Mark
Number			
4 (c)	C		1
Question	Correct Answer	Reject	Mark
Number			
5	С		1
		ļ.	
Question	Correct Answer	Reject	Mark
Number		1,	
6(a)	В		1
O(u)			'
Question	Correct Answer	Rejecct	Mark
number	Oorrect Allower	Rejecet	IVICITY
6 (b)	D		1
0 (b)	טון		!
Question	Correct Answer	Reject	Mark
Number	Correct Ariswei	Reject	IVIALK
	D		1
6 (c)	D		1
0 11		D : 1	
Question	Correct Answer	Reject	Mark
Number			
6 (d)	A		1
	1		
Question	Correct Answer	Reject	Mark
Number			
7(a)	С		1
Question	Correct Answer	Reject	Mark
Number			
7 (b)	D		1
\/		I .	

Section A = 20 marks

Section B

Question Number	Acceptable Answers		Reject	Mark
8(a)(i)	+104.6 - [+41.4 +165]	(1)		2
	= -101.8 J mol ⁻¹ K ⁻¹			
	Value, sign and unit	(1)		
	Ignore SF except one			
	Internal TE allowed for recognisable numbers for example:	S,		
	$\Delta H_{\text{at}}^{\text{e}}$ calcium instead of S^{e} (178.2 \rightarrow -238.6)		
	OR			
	Halving S° [Cl ₂] (82.5 → -19.3)			
	Correct answer with no working	(2)		
	+/no sign 101.8 J mol ⁻¹ K ⁻¹	(1)		

Question Number	Acceptable Answers	Reject	Mark
8 (a)(ii)	(The sign is negative because)		2
	Any two from:		
	(A solid and) a gas reacting to form a solid.		
	OR (Entropy decreases because) a gas reacting to form a solid.	Energy	
	There are fewer ways of arranging particles in a solid than a gas or vice-versa.		
	OR Decrease in disorder as solid more ordered than gas or vice versa		
	Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule)		
	OR		
	Number of mol(es)/molecules decreases		
	OR Fewer/less mol(es) of products than reactants		
	COMMENT		
	If answer to (a)(i) is positive then answer should start	'(Positive) Answer is as expected'	
	'Answer is not as expected because'	expected	
	Then score as above (which can score full marks).		

Question	Correct Answer	Reject	Mark
Number			
8 (b)	$\Delta S^{e}_{total} = \Delta S^{e}_{surroundings} + \Delta S^{e}_{system}$		2
	OR		
	= +2670 + (-101.8)		
	= (+)2568.2		
	Value 2568.2/2568 (1)		
	$= (+)2570 (J mol^{-1} K^{-1})$		
	3SF		
	This mark is conditional on correct value or correct TE value from (a)(i)		
	Accept TE from (a)(i)		
	-238.6 → +2431.4 → +2430		
	-19.3 → 2650.7 → +2650		
	Correct answer (2570, etc) with or without working scores (2)		

Question Number	Correct Answer1		Reject	Mark
8 (c)	$\Delta S^{e}_{surroundings} = -\frac{\Delta H^{e}}{298}$ $\Delta H^{e^{-}} = -\Delta S^{e}_{surroundings} \times 298$			2
	OR = -2670 x 298	(1)		
	= -795.660			
	= -795.7 (kJ mol ⁻¹)	(1)		
	ALLOW = $-795.7 \times 10^3 \text{ J mol}^{-1}$			
	Note			
	1796 = -796.1964 (if 2570 to calculate entropy change of surroundings first.)	used		
	2. ΔH^{\bullet} (= + $\Delta S^{\bullet}_{\text{surroundings}} \times 298$	3)		
	$= +795.7 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	But			
	$\Delta H^{\circ} = - \Delta S_{\text{surroundings}}^{\circ}$ 298	(0)		
	Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
8 (d)(i)	50 x 4.2 x 15.0		1
	= 3150 (J) Ignore sign		
	ALLOW		
	3.15 kJ		
	Ignore SF except one		

Question Number	Correct Answer	Reject	Mark
8 (d)(ii)	3150/0.05 or 20 x 3150		2
	= -63 (kJ mol ⁻¹) /-63000 J mol⁻¹		
	Allow TE answer (d)(i) / 0.05		
	Ignore SF except one		
	Value (1)		
	Sign (1)		
	The mark for the negative sign is awarded for the calculation even if the value is wrong, providing any energy divided by moles or energy multiplied by 1/number of moles calculation has been done.		

Question Number	Correct Answer	Reject	Mark
*8	The correct answer:		3
(d)(iii)	-380.5/-381 kJ mol ⁻¹		
	Full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	$\Delta H_{\text{solution}}$ + Lattice energy		
	$= \Delta H_{\text{hydration}} \text{Ca}^{2+} + (2)\Delta H_{\text{hydration}} \text{CI}^{-}$		
	(1)		
	Second mark		
	$2 \Delta H_{\text{hydration}} \text{CI}^- = -2258 - 63 -$		
	(-1560) = -761		
	ALLOW		
	Any number or group of numbers		
	minus (-1560) (1)		
	Third mark		
	$\Delta H_{\text{hydration}} \text{ CI}^- = -380.5/-381 \text{ (kJ mol}^{-1})$		
	Any number, wherever it has come from,		
	divided by two can score this mark, provided that the sign is consistent.		
	(1)		
	Ignore SF except one		
	Use of lattice energy – 2223 gives –363 scores (2)		
	ALLOW		
	TE from (d)(ii)		

Question Number	Correct Answer	Reject	Mark
8 (d)(iv)	H O H O H O H C I H O H	Cl⁻.H₂O	2
	OR O - H Ce H-0 + H O - H		
	 One/several water molecule(s) all correctly orientated. H^{δ+}/ hydrogen (one or two hydrogens from each water molecule) towards chloride ion and O / oxygen (one oxygen from each water molecule) towards calcium ion With negative charge either on chlorine or on the whole hydrated ion and with double positive charge either on calcium or on the whole hydrated ion. 	H ^{δ-} / H ⁺ / H ⁻	
	 A minus sign with a ring around it for the Cl⁻ and a 2+ sign with a ring around it for the Ca²⁺ Bonds shown by lines/broken lines/dotted lines/wedges 	(with no charge)	

Question Number	Correct Answer	Reject	Mark
8(d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic .	The breaking of the lattice is exothermic.	
	OR Strong(er) forces between the $\delta+$ H and CI $^{-}$	exothermic.	
	OR Strong(er) forces between the $\delta-$ O and \mbox{Mg}^{2^+}		
	OR Strong(er) ion-dipole forces		
	OR Formation of bonds releases energy		
	OR Strong(er) bonds formed		
	OR Enthalpy of hydration is greater than lattice energy (1)		
	Second mark		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly arranged	
	OR Water molecules more ordered/ clustered (around the ions). (1)	Ions more ordered	

Total 18 marks

Question Number	Correct Answer	Re	eject	Mark
9 (a)(i)	Sodium/potassium dichromate ((VI)) and (Dilute/concentrated) sulfuric acid		Hydrochloric acid	2
	OR			
	correct formulae / H ⁺ and Cr ₂ O ₇ ²⁻			
	ALLOW			
	H ⁺ and Cr ₂ O ₇ ²⁻ /acidified dichromate((VI))			
	(1)		
	Reflux/distil			
	Ignore 'heat', 'warm', and 'boil' alone.			
	ALLOW			
	Just 'under reflux'			
	Just 'under distillation'			
	C	1)		
	Second mark depends on mention of dichromate/Cr ₂ O ₇ ²⁻ in first part			
	OR			
	KMnO ₄ and acid with heat (1	I)		

Question Number	Correct Answer		Reject	Mark
9 (a) (ii)	Carbonyl group – addition of 2,4-dinitrophenylhydrazine / 2,4-DNP(H) / Brady's reagent	(1)	2-DNP/4DNP Just DNP	4
	to give yellow/orange/red precipitate/ppt/ppte/solid/crystals		Brick red ppt	
	ALLOW			
	recognisable spelling e.g., percepit	ate		
	CH ₃ C=O reaction with iodine in alkali/NaOH/KOH/OH	(1)		
	ALLOW			
	lodoform/tri-iodomethane/haloform			
	AND			
	reaction/test	(1)		
	to form (pale) yellow / cloudy precipitate/solid/crystals	(1)		
	Ignore references to smell			
	Ignore heat in either part			
	Note			
	In both cases result mark depends on test being recognisably correct even if it not score a mark	did		
	Examples:			
	DNP gives yellow ppt			
	lodine test gives yellow ppt			
	Tests for aldehydes with correct results, no marks			

Question	Correct Answer	Reject	Mark
9 (b) (i)	CH ₃ N=CH ₃ N=C-C-ON + GCN CH ₃ Arrow (from carbon) of CN to carbon of C=O AND Arrow from part of C=O double bond to oxygen ALLOW Two steps via a charged canonical form (1) Intermediate anion with C-CN bond. (1) Arrow from resulting O to hydrogen of HCN/H+/H ₂ O (1) Note Arrow directions must be correct to score each mark Penalise half-headed arrows each time in both parts ALLOW skeletal formulae.	CN without negative charge	3

Question	Correct Answer	Reject	Mark
Number			
9 (c)(i)	(Acid) hydrolysis	Hydration	1
	OR		
	Alkaline hydrolysis followed by		
	acidification		

Question Number	Correct Answer	Reject	Mark
9 (b)(ii)	At low pH very few CN ⁻ ions		1
	ALLOW		
	No CN ⁻ ions		
	OR		
	No KCN/ only HCN present (1)		
	At high pH very few H ⁺ / HCN		
	ALLOW		
	No H ⁺ / HCN		
	OR		
	Hydroxide reacts with H ⁺ / HCN/ acid (1)		

Question Number	Correct Answer	Reject	Mark
9 (c) (ii)	The O-H absorptions for alcohol and carboxylic acid overlap. OR OH absorption for an acid is very broad OR Quote data booklet values which must show some overlap, to include 3300 to 3200. ALLOW	Just 'both have OH groups' Just 'two OH groups present'	1
	OH absorptions similar/the same.		

Question Number	Correct Answer	Reject	Mark
9 (c) (iii)	(Chemical shift) 2.0 - 4.0 (ppm) / any value within this range e.g 3.1/ 3.12/3 ALLOW Correct number followed by , eq 3δ		1

Question Number	Correct Answer	Reject	Mark
9(c)(iv)	3 (peaks) / three		1

Question	Correct Answer	Reject	Mark
Number			
9 (c) (v)	There is no hydrogen atom/proton on the adjacent/neighbouring carbon atom		1
	ALLOW		
	No adjacent/neighbouring hydrogens/protons		

Question Number	Correct Answer	Reject	Mark
9 (c)(vi)	(No)		1
	2-hydroxy-2-methylpropanoic acid does not have a chiral centre	Yes	
	OR		
	It is not chiral		
	OR		
	It does not have a mirror image which is non-superimposable		
	OR		
	Does not have a carbon atom attached to four different groups		

Question Number	Correct Answer	Reject	Mark
9 (d) (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
	Ester linkage (1)	
	Rest of molecule (1)	
	ALLOW		
	Attached chains as structural formulae		
	Ignore n or other numbers outside bracket		
	COMMENT Check formulae carefully – different carbon frameworks appear.		

Question	Correct Answer	Reject	Mark
Number			
9(d)(ii)	Ester		1

Total 20 marks

Question Number	Correct Answer	Reject	Mark
10(a)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$		1
	ALLOW multiples		
	Ignore state symbols even if incorrect		
	COMMENT		
	2 in front of sulfate is often missed.		

Question	Correct Answer	Reject	Mark
Number			
10 (b)(i)	Blue/black /blue-black	purple	1
	OR		
	Colourless to blue-black/ blue/black		

Question Number	Correct Answer	Reject	Mark
10 (b)(ii)	The mixture would change colour/ go blue/black /blue-black immediately/straight away		1
	ALLOW		
	too quick(ly)/too early		
	quicker		
	no time delay		

Question Number	Correct Answer	Reject	Mark
10 (b)(iii)	(As quickly as iodide reacts to form iodine it is) reduced/turned back to iodide by the thiosulfate ions		1
	ALLOW		
	Persulfate reacts with thiosulfate first.		
	OR		
	lodine reacts with thiosulfate.		

Question Number	Correct Answer	Reject	Mark
10 (c) (i)	First mark Correct graph of rate v concentration, with axes correct and values increasing on both axes labelled with quantity and units Note Units may be given in brackets with no slash. s/t meaning s divided by time is fine. Second mark Sensible scales to use at least half the graph paper but allow graphs starting at the origin and points cover two by two big squares. Linear scales All points reasonably correct with straight line drawn Second mark depends on correct graph of rate v concentration, but not other detail of first mark		2

Question Number	Correct Answer	Reject	Mark
	First order This mark is independent of the graph drawn (1) Because the graph is a straight line (through the origin)/ rate is proportional to [1 ⁻] OR As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including 'x') OR Rate increases linearly (with concentration) OR Gradient of line is constant (1)	Just 'as concentration increases rate increases'	Mark 2
	Second mark depends on first order		

Question Number	Correct Answer		Reject	Mark
10 (c)(iii)	Rate = $k[S_2O_8^{2-}][I^-]$ (7) Units - $dm^3 mol^{-1} s^{-1}$ (1) TE from (c)(ii)	1)	Incorrect formulae	2
	ALLOW Units in any order Internal TE from rate equation			

Question Number	Correct Answer	Reject	Mark
	Method 1		3
	First mark		
	Gradient = $-E_a/R$		
	OR		
	$E_{\rm a} = - R \times {\rm gradient}$ (1)		
	Second mark		
	(Gradient =) <u>-3.15-(-3.84)</u> (3.20-3.31)x10 ⁻³		
	OR		
	= -6272.7 (K)		
	Please award this mark if -6272.7 is seen anywhere! (1)		
	Method 2		
	First mark Setting up two simultaneous equations (1)		
	Second mark Subtracting one equation from the other or other correct methods of solution		
	(1) Third mark (applies to both methods)		
	(E_a) = $+52126 \text{ J mol}^{-1}$ $/+52.1(26)\text{kJ mol}^{-1}$		
	Note: TE can only be given if either method 1 or method 2 has been clearly carried out.	Negative sign	
	Positive sign given		
	OR Two negative signs clearly cancel in method and no sign given (1)		
	Correct answer with or without working, with sign and units (3)		
	Ignore SF unless only one		

Question Number	Correct Answer	Reject	Mark
10 (d)(ii)	Either		1
	Take readings at different temperatures		
	OR Repeat at the same two temperatures		
	ALLOW		
	Just 'repeat the experiment'		

Total 14 marks

Section B = 52 marks

Section C

Question Number	Correct Answer	Reject	Mark
11(a)(i)	Purple gas/ gas turns colourless (1)	Purple liquid/solid	2
	to (silver/shiny) grey/black solid (1)		
	Just gas to solid		
	OR solid forming (1)max		

Question Number	Correct Answer		Reject	Mark
11 (a)(ii)	First mark			2
(4)(1)	Heat for different lengths of time			
	OR			
	After more time/specified time eg 2 days			
	OR			
	Use a colorimeter			
	OR			
	Set up reverse reaction	(1)		
	Second mark			
	Measure the concentration of a reactant or product of two tubes, which should be the same			
	OR Colour does not change /is same	(1)		

Question Number	Correct Answer	Reject	Mark
*11 (b)(i)	Equilibrium moles		5
	HI $\frac{30 \times 0.00353}{1000} = 0.0001059$ (1)		
	H_2 and I_2 $\frac{30 \times 0.00048}{1000} = 0.0000144$ (1)		
	Initial amount of HI = 0.0001059 + 2 x 0.0000144		
	= 0.0001347 (mol)		
	ALLOW TE from wrong moles of either or both entity		
	(1)		
	Mass of 1 mol of HI $=$ 127.9 (1)		
	Mass of HI = 0.0001347×127.9		
	= 0.0172 g (1)		
	Correct answer with or without working (5)		
	All marks stand alone		
	Last two marks are available for any amount in moles x 127.9correctly calculated		

Question	Correct Answer	Reject	Mark
Number			
11 (b)(ii)	$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}}$	p H ₂ etc (K _p)	1
	Ignore state symbols unless (aq) or (s)		
	Ignore eq or eqm		

Question Number	Correct Answer	Reject	Mark
11 (b)(iii)	$K_{c} = \frac{0.00048 \times 0.00048}{0.00353^{2}}$		1
	= 0.018489		
	= 0.0185		
	Allow all SF except 1		

Question Number	Correct Answer	Reject	Mark
11 (b)(iv)	The units cancel		1
	OR		
	There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
11 (c)(i)	$K_{c'} = \frac{[H_2]^{\nu_2}[I_2]^{\nu_2}}{[HI]}$	p H ₂ etc (K _p)	1
	Ignore state symbols unless (aq) or (s)	but not if already penalised	
	Ignore eq or eqm		

Question Number	Correct Answer		Reject	Mark
11 (c)(ii)	$K_c' = \frac{[0.00048]^{\frac{1}{2}}[0.00048]^{\frac{1}{2}}}{[0.00353]}$			2
	= 0.136			
	Allow all SF except 1			
		(1)		
	Which is the square root of the previous value			
	OR			
	$K_{c} = (K_{c})^{2}$			
	OR			
	$0.136^2 = 0.0185$	(1)		

Question Number	Correct Answer	Reject	Mark
11 (d)	Frist mark		3
	K_p remains unchanged/constant (1)	K_p decreases for this mark only	
	Second mark		
	(when pressure is increased) the quotient/ratio p_{H2} : $(p_{HI})^2$ becomes less than Kp		
	OR		
	Ratio decreases		
	OR		
	Ratio proportional to 1/P		
	(P is total pressure change)		
	ALLOW		
	$K_{\rm p}$ proportional to 1/P (1)		
	Third mark		
	To restore the value of the quotient/ratio to <i>K</i> p		
	ALLOW		
	To restore Kp		
	And		
	EITHER		
	p _{H2} increases / p _{HI} decreases (1)		
	OR		
	Equilibrium shifts to the right (1)		

Total 18 marks

Section C = 18 marks

TOTAL FOR PAPER = 90 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE