

Mark Scheme (Results)

June 2014

GCE Chemistry (6CH04/01)
General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038324
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

0 11		l	
Question	Correct Answer	Reject	Mark
Number			_
1 (a)	В		1
	T	1	I
Question	Correct Answer	Reject	Mark
Number			
1 (b)	С		1
		1	1
Question	Correct Answer	Reject	Mark
Number			
1 (c)	A		1
		1	•
Question	Correct Answer	Reject	Mark
Number			
1 (d)	D		1
Question	Correct Answer	Reject	Mark
Number			
2 (a)	В		1
Question	Correct Answer	Reject	Mark
Number			
2 (b)	D		1
	,	•	
Question	Correct Answer	Reject	Mark
Number			
2 (c)	D		1
			I
Question	Correct Answer	Reject	Mark
Number		,	
2 (d)	С		1
_ (-,/	<u> </u>		_
Question	Correct Answer	Reject	Mark
Number		l tojoot	Mark
3	D		1
	1 =	1	<u></u>
Question	Correct Answer	Reject	Mark
Number	00.1.000741104401		Wark
4 (a)	В		1
. (~)	1 -		. •
Question	Correct Answer	Reject	Mark
Number	COLLECT VIISARCI	Keject	IVIAIR
4 (b)	В		1
4 (D)	D		<u> </u>
Question	Correct Answer	Poject	Mark
Number	Correct Answer	Reject	IVIALK
	C		1
4 (c)	V	<u> </u>	<u> </u>

Question Number	Correct Answer	Reject	Mark
5	В		1
	D	<u>l</u>	
6 (a)	В		1
<u> </u>	15		<u> •</u>
Question	Correct Answer	Reject	Mark
Number		3	
6 (b)	С		1
		·	•
Question	Correct Answer	Reject	Mark
Number		_	
6 (c)	D		1
Question	Correct Answer	Reject	Mark
Number			
6 (d)	A		1
	·		
Question	Correct Answer	Reject	Mark
Number			
7 (a)	A		1
-	Τ-	Ι	1
Question	Correct Answer	Reject	Mark
Number			_
7 (b)	C		1
0	Q	Delet	D.4 1
Question	Correct Answer	Reject	Mark
Number	Δ.		1
8	A		ı I

Section B

Question Number	Acceptable Answers	Reject	Mark
9 (a)(i)	+89.6 – [+32.7 + 165] (1)		2
	$= -108.1 \text{ J mol}^{-1} \text{ K}^{-1} / \text{ J K}^{-1} \text{ mol}^{-1}$		
	Value, sign and units (1)		
	Ignore SF except one		
	Internal TE for recognisable numbers allowed, for example:		
	ΔH ^a _{at} magnesium chloride (147.7→ -223.1)		
	Halving S^{\bullet} [Cl ₂] (82.5 → -25.6)		
	Correct answer with no working (2)		
	+/no sign 108.1 J mol ⁻¹ K ⁻¹ / J K ⁻¹ mol ⁻¹ (1)		

Question Number	Acceptable Answers	Reject	Mark
9 (a)(ii)	(The sign is negative because)		2
	Any two from:		
	(A solid and) a gas reacting to form a solid.		
	OR		
	(Entropy decreases because) a gas reacting to form a solid.	Energy	
	There are fewer ways of arranging particles in a solid than a gas or viceversa.		
	OR		
	Decrease in disorder as solid more ordered than gas or vice versa		
	Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule)		
	OR		
	Number of mol(es)/molecules decreases		
	OR		
	Fewer/less mol(es) of products than reactants		
		'(Positive) Answer is as expected' (0)	

Question Number	Correct Answer	Reject	Mark
9 (b)	$\Delta S^{\circ}_{total} = \Delta S^{\circ}_{surroundings} + \Delta S^{\circ}_{system}$		2
	OR		
	= +2152 + (-108.1)		
	= (+)2043.9		
	Value 2043.9 / 2044 (1)		
	$= (+)2040 (J \text{ mol}^{-1} \text{ K}^{-1})$		
	3SF		
	This mark conditional on correct value or		
	correct TE value from (a)(i) (1)		
	Accept TE from (a)(i), for example,		
	-223.1 → +1928.9 → +1930		
	-25.6 → +2126.4 → +2130		
	Correct answer (2040, etc) with or without working scores 2		

Question Number	Correct Answer1		Reject	Mark
9 (c)	$\Delta S^{\theta}_{\text{surroundings}} = - \underline{\Delta H^{\theta}}_{298}$			2
	$\Delta H^{\bullet} = -\Delta S^{\bullet}_{\text{surroundings}} \times 298$			
	OR			
	$\Delta H^{\circ} = -2152 \times 298$	(1)		
	= -641.296			
	$= -641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	ALLOW			
	$= -641.3 \text{ x} 10^3 \text{ J mol}^{-1}$			
	Note			
	1640.1338 = -640.1 (if 2040/answer to part (b) used recalculate entropy change of surroundings first.)	to (2)		
	2. $\Delta H^{-} = +641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	3. $\Delta H^{\bullet} = -\frac{\Delta S^{\bullet}_{\text{surroundings}}}{298}$	(0)		
	Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
9 (d)(i)	50 x 4.2 x 22.5		1
	= 4725 (J) Ignore sign		
	ALLOW		
	4.725 kJ		
	Ignore SF except one		

Question Number	Correct Answer	Reject	Mark
9 (d)(ii)	There are two legitimate answers to this part. If both methods have been used, you must send the item to review under mark scheme		2
	(-)4725 ÷ 0.0300		
	$= -157.5 \text{ (kJ mol}^{-1}) /-157500 \text{ J mol}^{-1}$		
	OR		
	(-)4725 ÷ 0.0500		
	= $/-94.5$ (kJ mol ⁻¹) $/-94500$ J mol⁻¹		
	ALLOW		
	TE answer (d)(i) ÷ 0.0300/0.0500		
	Ignore SF except one		
	Value (1)		
	Sign (1)		
	The mark for the negative sign is awarded for their calculation even if value is wrong, providing any energy divided by moles or energy multiplied by 1/number of moles calculation has been done.		

Question Number	Correct Answer	Reject	Mark
9 (d) (iii)	There are two correct answers:		3
	Using 0.03 gives the answer of -381.75 kJ mol ⁻¹		
	Using 0.05 gives the answer of -350.25 kJ mol ⁻¹		
	Both these answers score full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	ΔH _{solution} + Lattice energy		
	$= \Delta H_{\text{hydration}} \text{Mg}^{2+} + (2)\Delta H_{\text{hydration}} \text{CI}^{-}$		
	Second mark (1)		
	$2 \Delta H_{hydration} CI^{-} = -2526 - 157.5 -$		
	(-1920) = -763.5		
	OR		
	$2 \Delta H_{hydration} CI^{-} = -2526 - 94.5 -$		
	(-1920) = -700.5		
	ALLOW		
	Any number or group of numbers minus (-1920) (1)		
	Third mark		
	$\Delta H_{\text{hydration}} \text{ CI}^{-} = -381.75 \text{ (kJ mol}^{-1}\text{)}$		
	OR		
	$\Delta H_{\text{hydration}} \text{ CI}^{-} = -350.25 \text{ (kJ mol}^{-1}\text{)}$		
	Any number, wherever it has come from,		

divided by two can score this mark, provided that the sign is consistent.	(1)	
Ignore SF except one		
Use of lattice energy – 2326 gives –281.75/–250.25 scores	(2)	
ALLOW		
TE from (d)(ii)		

Question Number	Correct Answer	Reject	Mark
9 (d) (iv)	OH CI- HOOM	CI⁻.H₂O	1
	0-4 H O-H Ce H-0/4		
	 One/several water molecule(s) all correctly orientated. H^{δ+}/ hydrogen (one or two hydrogens from each water molecule) towards chloride ion 		
	 with negative charge either on chlorine or on the whole hydrated ion. 	H ^{δ-} / H ⁺ /	
	ALLOW		
	 A minus sign with a ring around it for the CI⁻ Bonds shown by lines/broken lines/dotted lines/wedges 	Cl ^{δ−} / Cl (with no charge)	

Question Number	Correct Answer	Reject	Mark
9(d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic .	The breaking of the lattice is	
	OR	exothermic.	
	Strong(er) forces between the δ+ H and Cl ⁻		
	OR		
	Strong(er) forces between the $\delta-$ O and Mg $^{2+}$		
	OR		
	Strong(er) ion-dipole forces		
	OR		
	Formation of bonds releases energy		
	OR		
	Strong(er) bonds formed		
	OR		
	Enthalpy of hydration is greater than lattice energy		
	Second mark (1)		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW		
	Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly arranged	
	OR		
	Water molecules more ordered/ clustered (around the ions). (1)	Ions more ordered	

Total for Question 9 = 17 marks

Question Number	Correct Answer		Reject	Mark
10(a)(i)	Sodium/potassium dichromate ((VI)) and (Dilute/concentrated) sulfuric acid	t	Hydrochloric acid	2
	OR			
	correct formulae / H ⁺ and Cr ₂ O ₇ ²⁻			
	ALLOW			
	H ⁺ and Cr ₂ O ₇ ²⁻ /acidified dichromate((VI))) 1)		
	Reflux/distil			
	Ignore 'heat', 'warm', and 'boil' alone.			
	ALLOW			
	Just 'under reflux'			
	Just 'under distillation'	1)		
	Second mark depends on mention of dichromate/Cr ₂ O ₇ ²⁻ in first part			
	OR			
	KMnO ₄ and acid with heat (1	1)		

Question Number	Correct Answer	Reject	Mark
10 (a)(ii)	Carbonyl group – addition of 2,4-dinitrophenylhydrazine / 2,4-DNP(H) / Brady's reagent (1)	2-DNP/4DNP Just DNP	4
	to give yellow/orange/red precipitate/ppt/ppte/solid/crystals	Brick red ppt	
	ALLOW		
	recognisable spelling e.g., percepitate		
	CH ₃ C=O reaction with iodine in alkali/NaOH/KOH/OH ⁻		
	ALLOW		
	lodoform/tri-iodomethane/haloform		
	AND		
	reaction/test (1)		
	to form (pale) yellow / cloudy precipitate/solid/crystals (1)		
	Ignore references to smell		
	Ignore heat in either part		
	Note		
	 In both cases result mark depends on test being recognisably correct even if it did not score a mark 		
	Examples:		
	DNP gives yellow ppt		
	lodine test gives yellow ppt		
	Tests for aldehydes with correct results, no marks		

Question	Correct Answer	Reject	Mark
Number 10 (b) (i)	CH ₃		3
10 (b)(i)	N = C(2) $C = 0$ $C = 0$		3
	ČH ₃		
	$N \equiv C - C - C = 0$ $H - C \equiv N$		
	CH ₂ CH ₃		
	-> NC- C-OH (+ CN)		
	Arrow (from carbon) of CN ⁻ to carbon of C=O	CN without	
	AND	negative charge	
	Arrow from part of C=O double bond to oxygen		
	ALLOW		
	Two steps via a charged canonical form (1)		
	Intermediate anion with C-CN bond. (1)	C-NC bond	
	Arrow from resulting O ⁻ to hydrogen of HCN/H ⁺ /H ₂ O (1)	C-INC DOTIG	
	Note		
	Arrow directions must be correct to score each mark Penalise half-headed arrows each time in both parts ALLOW skeletal formulae.		

Question Number	Correct Answer		Reject	Mark
10 (b)(ii)	Forms a racemic mixture ((1)		3
	Because bonds around C=O are planar		Butanone/molecule/it is planar	
	OR		C=O is planar	
	Carbonyl group/reaction site is (trigonal) planar OR		Carbonyl bond is planar Intermediate is planar	
	Bonds around carbonyl carbon are planar ([1)		
	Cyanide can attack from either side above or below	/ (1)		

Question Number	Correct Answer	Reject	Mark
10 (c)(i)	(Acid) hydrolysis OR	Hydration	1
	Alkaline hydrolysis followed by acidification		

Question Number	Correct Answer	Reject	Mark
10 (c)(ii)	The O-H absorptions for alcohol and carboxylic acid overlap. OR OH absorption for an acid is very broad OR Quote data booklet values which must show some overlap, to include 3300 to 3200. ALLOW OH absorptions similar/the same.	Just 'both have OH groups' Just 'two OH groups present'	1

Question	Correct Answer	Reject	Mark
Number			
10 (c) (iii)	(Chemical shift δ) 2.0 - 4.0 (ppm) / any value within this range		1
	ALLOW Correct number followed by δ , eg 3δ		

Question	Correct Answer	Reject	Mark
Number			
10	There is no hydrogen atom/proton on the		1
(c)(iv)	adjacent/neighbouring carbon atom		
	ALLOW		
	No adjacent/neighbouring		
	hydrogens/protons		

Question Number	Correct Answer	Reject	Mark
10 (d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2
	Ester linkage (1)		
	Rest of molecule (1)		
	ALLOW		
	Attached chains as structural formulae		
	Ignore n or other numbers outside bracket		

Total for Question 10 = 18 marks

Question Number	Correct Answer	Reject	Mark
11(a)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$		1
	ALLOW multiples		
	Ignore state symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark
11 (b)(i)	Blue/black /blue-black	Purple	1
	OR		
	Colourless to blue-black/ blue/black		

Question Number	Correct Answer	Reject	Mark
11 (b)(ii)	The mixture would change colour/ go blue/black /blue-black immediately/straight away		1
	ALLOW		
	too quick(ly)/too early		
	quicker		
	no time delay		

Question Number	Correct Answer	Reject	Mark
11 (b)(iii)	(As quickly as iodide reacts to form iodine it is) reduced/turned back to iodide by the thiosulfate ions		1
	ALLOW		
	Persulfate reacts with thiosulfate first.		
	OR		
	lodine reacts with thiosulfate.		

Question	Correct Answer	Reject	Mark
Question Number 11 (c) (i)	Correct Answer	Reject	Mark 2
	All points reasonably correct with straight line drawn (1) Second mark depends on correct graph of rate v concentration, but not other detail of first mark		

Question Number	Correct Answer	Reject	Mark
11 (c) (ii)	First order This mark is independent of the graph drawn (1) Because the graph is a straight line (through the origin)/ rate is proportional to [S ₂ O ₈ ²⁻] OR As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including 'x') OR Rate increases linearly (with concentration) OR Gradient of line is constant (1)	Just 'as concentration increases rate increases'	2
	Second mark depends on first order		

Question	Correct Answer		Reject	Mark
Number				
11	Rate = $k[S_2O_8^{2-}][I^-]$		Incorrect formulae	2
(c)(iii)		(1)		
	TE from (c)(ii)			
	Units - dm ³ mol ⁻¹ s ⁻¹			
	ALLOW			
	Internal TE from rate equation	(4)		
	Units in any order	(1)		

Question Number	Correct Answer		Reject	Mark
11 (d) (i)	Method 1			3
	First mark			
	Gradient = $-E_a/R$			
	OR $E_{a} = - R \times gradient$ (1)	1)		
	Second mark			
	(Gradient =) <u>-3.0-(-3.69)</u> (3.30-3.41) x 10 ⁻³			
	OR = -6272.7 (K)			
	Please award this mark if -6272.7 is seen anywhere!	1)		
	Method 2			
	First mark			
	Setting up two simultaneous equations	1)		
	Second mark	1)		
	Subtracting one equation from the other or other correct methods of solution	1)		
	Third mark (applies to both methods)	1)		
	(E_a) = +52126 J mol ⁻¹ /+52.1(26)kJ mol ⁻¹			
	Note: TE can only be given if either method or method 2 has been clearly carried out.	1	Negative	
	Positive sign given		sign	
	OR Two negative signs clearly cancel in method and no sign given (1)	1)		
	Correct answer with or without working, with sign and units	า 3)		
	Ignore SF unless only one			

Question Number	Correct Answer	Reject	Mark
11	Either		1
(d) (ii)	Take readings at different temperatures		
	OR Repeat at the same two temperatures		
	ALLOW		
	Just 'repeat the experiment'		

Total for Question 11 = 14 marks

Total for Section B = 49 marks

Section C

Question Number	Correct Answer		Reject	Mark
12(a)(i)	Mass of ethanoic acid = 0.04 x 60.1 = (2.404 g) Volume of ethanoic acid = 2.404 ÷	1)		2
	1.049 =			
	$2.2917 = 2.3 \text{ (cm}^3\text{)}$	1)		
	Correct answer with no working (2	2)		
	Ignore SF except only one			
	ALLOW			
	60.0 for molar mass which gives mass 2.4 and volume 2.288 = 2.3 cm ³ (2	2)		
	OR			
	First step 1.049 \div 60/60.1 to find number of moles in 1 cm ³ = 0.017 (1)	1)		
	Then volume = $0.04 \div 0.017$ = $2.3529 \text{ (cm}^3\text{)}$			
	But note, if whole calculation done on calculator, 60 gives 2.2879 and 61 gives 2.2917.			
	If units given, they must be correct, bu penalise wrong units only once here.	ut		

Question Number	Correct Answer	Reject	Mark
12 (a)(ii)	Syringe	Gas syringe	1
	ALLOW Burette	Biuret	
	Graduated/adjustable pipette	Just 'pipette'	

Question Number	Correct Answer	Reject	Mark
12 (a)(iii)	To prevent		1
	evaporation/vapour escaping		
	water vapour entering		
	OR To maintain a closed system		
	OR To maintain a closed environment		
	ALLOW		
	To prevent:		
	air oxidizing the alcohol		
	reaction with air		
	OR Due to volatility (of chemicals)		
	IGNORE		
	gas escaping		
	HCI escaping		

Question Number	Correct Answer		Reject	Mark
12	First and second mark			3
(a)(iv)	Phenolphthalein	(1)	Litmus/universal indicator	
	From colourless to (pale) pink/red	(1)	Pink to colourless	
	ALLOW Other indicators with pK _{in} in range 7.5 10	_		
	Some examples are:			
	Thymol blue ((base)) (yellow to blue)		Thymol blue (acid)	
	Phen ol red (yellow to red)		Phenyl red	
	Thymolphthalein (colourless to blue)		Methyl red	
	Second mark depends on correct indicate except bromothymol blue, which is incorrect but very close to range so allocolour yellow to blue.			
	Third mark Sodium ethanoate is (slightly) alkaline			
	OR Ethanoic acid is a weak acid			
	OR Phenolphthalein pH range coincides wi vertical section of the pH/titration curv			
	OR Titration of weak acid with strong base			
	OR Neutralisation/equivalence point is at 8 10/ any number between 8 and 10.	! -		
	OR pK _{in} +/-1 lies within vertical region	(1)		
	Third mark is independent	(1)		

Question Number	Correct Answer	Reject	Mark
12 (b)(i)	$CH_3COOH + CH_3CH_2OH \rightleftharpoons$ $CH_3COOCH_2CH_3 + H_2O$		1
	ALLOW		
	Single arrow		
	-CO₂H		
	-C ₂ H ₅		
	Displayed formulae		
	IGNORE state symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark
12 (b)(ii)	Volume of alkali reacting with ethanoic acid = 77.1-11.7 = 65.4 cm ³ (1)		2
	Moles of ethanoic acid = $\frac{65.4 \times 0.200}{1000}$ = 0.01308/1.308x10 ⁻² (mol)		
	Correct answer no working (2)		
	Ignore SF except 1		
	Allow internal TE for use of		
	Moles of ethanoic acid = $\frac{77.1 \times 0.200}{1000}$		
	= $0.01542/1.542x10^{-2}$ (mol) max(1)		

Question	Correct Answer	Reject	Mark
Number			
12 (b)(iii)	Number of moles of ethanol = $0.01308/1.308x10^{-2}$ (mol)		1
	TE same as (ii)		

Question Number	Correct Answer	Reject	Mark
12 (b)(iv)	Number of moles of ethyl ethanoate		1
	=0.0400-0.01308 = 0.02692 (mol)		
	Allow TE from (ii)/(iii) for example		
	0.01542 gives 0.02458		

Question Number	Correct Answer		Reject	Mark
12 (b)(v)	$K_{c} = \frac{[CH_{3}CO_{2}CH_{2}CH_{3}][H_{2}O]}{[CH_{3}CO_{2}H][CH_{3}CH_{2}OH]}$	(1)		2
	= <u>0.02692 x 0.02692</u> 0.01308 x 0.01308			
	= 4.23579 = 4.24	(1)		
	Ignore SF except one	(1)		
	Allow TE from (ii), (iii) and (iv) for example			
	0.01542 etc gives 2.54			
	No TE for incorrect expression of K_c			

Question Number	Correct Answer	Reject	Mark
12 (b)(vi)	The units cancel OR		1
	There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
12 (b)(vii)	(Concentrated) hydrochloric acid contains water		1

Question Number	Correct Answer	Reject	Mark
12 (c)(i)	First test tube esterification		2
	OR		
	addition/elimination		
	ALLOW Condensation (1)		
	Second test tube (acid) hydrolysis (1)	Alkaline hydrolysis	
	Two fully correct answers in wrong order (1) max	followed by acidification	

Question Number	Correct Answer	Reject	Mark
12 (c)(ii)	The values are the same within experimental error	Justthe same	2
	OR		
	The values are concordant		
	ALLOW		
	The values are similar (1)		
	The equilibrium can be approached from either direction		
	OR		
	The reaction is reversible		
	OR		
	Any comment relating equilibrium to reversibility		
	IGNORE Dynamic equilibrium		
	OR		
	Rate of reverse reaction = rate of forward reaction (1)		

Question Number	Correct Answer	Reject	Mark
12 (c)(iii)	(Acid) catalyst (makes it faster)	Initiates	1
	OR Provides H ⁺ (as a catalyst)	Reacts with	
	OR Protonates	Protates	
	OR Protonating agent		
	OR Donates protons		
	OR Increases H ⁺ concentration		

Total for Section C = 21 marks

Total for Paper = 90 marks

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE