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1 Solve the inequality �3x − 1 � < �2x + 5 �. [4]

2 A curve is defined for 0 < 1 < 1
2
0 by the parametric equations

x = tan1, y = 2 cos21 sin 1.

Show that
dy

dx
= 6 cos51 − 4 cos31. [5]

3 The polynomial 4x3 + ax2 + bx − 2, where a and b are constants, is denoted by p�x�. It is given that

�x + 1� and �x + 2� are factors of p�x�.

(i) Find the values of a and b. [4]

(ii) When a and b have these values, find the remainder when p�x� is divided by �x2 + 1�. [3]

4 (i) Show that cos�1 − 60Å� + cos�1 + 60Å� � cos1. [3]

(ii) Given that
cos�2x − 60Å� + cos�2x + 60Å�
cos�x − 60Å� + cos�x + 60Å� = 3, find the exact value of cos x. [4]

5 The complex numbers w and Ï are defined by w = 5 + 3i and Ï = 4 + i.

(i) Express
iwÏ in the form x + iy, showing all your working and giving the exact values of x and y.

[3]

(ii) Find wÏ and hence, by considering arguments, show that

tan−1
�

3
5

� + tan−1
�

1
4

� = 1
4
0. �4�

6 It is given that I = Ó 0.3

0

�
1 + 3x2

�−2
dx.

(i) Use the trapezium rule with 3 intervals to find an approximation to I, giving the answer correct

to 3 decimal places. [3]

(ii) For small values of x,
�
1 + 3x2

�−2 ≈ 1 + ax2 + bx4. Find the values of the constants a and b.

Hence, by evaluating Ó 0.3

0

�1 + ax2 + bx4�dx, find a second approximation to I, giving the answer

correct to 3 decimal places. [5]
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7 The equations of two straight lines are

r = i + 4j − 2k + ,�i + 3k� and r = ai + 2j − 2k + -�i + 2j + 3ak�,

where a is a constant.

(i) Show that the lines intersect for all values of a. [4]

(ii) Given that the point of intersection is at a distance of 9 units from the origin, find the possible

values of a. [4]

8 The variables x and y are related by the differential equation

dy

dx
= 1

5
xy

1
2 sin

�
1
3
x
�

.

(i) Find the general solution, giving y in terms of x. [6]

(ii) Given that y = 100 when x = 0, find the value of y when x = 25. [3]

9 (i) Sketch the curve y = ln�x + 1� and hence, by sketching a second curve, show that the equation

x3 + ln�x + 1� = 40

has exactly one real root. State the equation of the second curve. [3]

(ii) Verify by calculation that the root lies between 3 and 4. [2]

(iii) Use the iterative formula

xn+1
= 3
��

40 − ln�xn + 1�
�
,

with a suitable starting value, to find the root correct to 3 decimal places. Give the result of each

iteration to 5 decimal places. [3]

(iv) Deduce the root of the equation

�ey − 1�3 + y = 40,

giving the answer correct to 2 decimal places. [2]

10 By first using the substitution u = ex, show that

Ô ln 4

0

e2x

e2x + 3ex + 2
dx = ln

�
8
5

�
. �10�
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