PH1

Question			Marking details	Marks Available
1	(a)		Use of cos 40° [or sin 50°] (1) [or by impl.] $\left(\frac{200}{\cos 40}\right)$ (1)= 260 N [subst or ans]	2
	(b)	(i) (ii)	Work done = Force × distance (1) in direction of force (1) There is no movement in the vertical direction [or equiv.] (1) I. Work done = 200 (1) × 2000 = 4.0×10^5 J ((unit)) [or 400 kJ] (1) II. $P = \frac{4 \times 10^5 (\text{ecf})}{30 \times 60(1)}$ (1) [NB or use of $P = Fv$]	3 2 2
	(c)		Attempt at resultant force calculation (1) $\Sigma F = 261 \text{ (ecf)} - 200 \text{ (1) } [=61 \text{ N}] \text{ [correct sign needed]}$	
			$a = \frac{61}{40} [=1.53 \text{ m s}^{-2}] [\text{no ecf on use of 261 N}] (1)$	3
				[12]
2	(a)		Ammeter shown in series with bulb [or in series with bulb/voltmeter parallel combination] (1) Voltmeter shown in parallel with bulb [or across bulb/ammeter series combination] (1)	2
	(b)	(i) (ii)	2.0 A 6.0 Ω	1 1
	(c)		Either: $\frac{1}{18} + \frac{1}{6(\text{ecf})} = \frac{1}{R_{\parallel}}(1); R_{\text{par}} = 4.5 \Omega (1)$ Subst into pot div equations: $12 = \frac{4.5}{4.5 + R} \times 16 (1)$ $R = 1.5 \Omega (1)$ Or: $I_{18\Omega} = \frac{12}{18} [=0.67 \text{ A}] (1); \text{ So } I_{\text{total}} = 2.67 \text{ A} [\text{ecf from } (a)](1)$ $R = \frac{4(1)}{2.67(\text{ecf})} = 1.5 \Omega (1)$	4
	(d)		Graph shown with positive gradient and linear through the origin for low values (1) and smoothly reducing gradient for higher values [NB – not negative gradients at end](1)	2
				[10]

Question			Markin	g details	Marks Available
3	(a)		Moment [or torque / couple]		1
	(b)	(i) (ii)	$4.0 \times 0.40 = \Delta \times 0.20 (1) \text{ [or by im}$ Wt of $\Delta = 8.0 \text{ N} (1)$ 12.0 N (1)[ecf = 4.0 + (b)(i)]	pl.]	2 1
	(C)	(i) (ii)	x = 0.34 m (1) x needs to stay the same (1) because momental at C are unchanged (1)	se force/weight [and hence the	3
			N.B. Ecf from <i>(b)</i> (ii)		2 [9]
4	(a)	(i) (ii)	[gradient =] $\frac{v-u}{t}$ (1); represents acceleration [accept: a] (1)		2
		(iii)	Represents displacement [accept: o direction]] (1) Either:	distance [travelled in a given	2
			v = u + at (1) $x = ut + \frac{1}{2}t(ut) \text{ shown (1)}$ [or other convincing working]	v = u + at (1) $x = \frac{1}{2}(u + u + at)t(1)$ [or other convincing working]	2
	<i>(b)</i>	(i)	$x = ut + \frac{1}{2}at^{2}$ used with $u = 0$ (1) x = 36 m (1)		2
		(ii)	v = u + at used with $u = 0$ (1) [or $vv = 6 \text{ m s}^{-1} (1)$	$u^2 = u^2 + 2ax$ used with $u = 0$]	2
	(c)	(i)	$x = \frac{1}{2}(u+v)t$ used (1)		
		(ii)	$t = 40 \text{ s (1)} [\text{Use of } u = 0 \text{ seen} \rightarrow 1]$ Use of $a = \frac{v - u}{t}$ (1) [Use of $u = 0$	seen \rightarrow 1 mark penalty]	2
			$a = [-] 0.15 \text{ m s}^{-2} (1)$		2
	(d)		Axes [inc + and – acceleration; tin Horizontal line from 0 s at 0.5 m s Horizontal line from at – 0.15 m s	ne; labelling] (1) $s^{-2}(1)$ [ecf from (c)(ii)] (1)	
			Change of <i>a</i> at 12 s and cease at 52	2 s (1)	4
	(e)	(i) (ii)	$\left(157 \text{ N} \right) = 47 \text{ NI} (1) \text{ for all } $	wivelent working 1	1
			$\left(\frac{4(1)}{4(1)} + \sigma\right)^{[-4/1N]} (1) [or each of 2] \rightarrow 0 \text{ marks}$	quivalent working.j	2
					[21]

Question			Marking details	Marks Available
5	(a)		Rearrangement of $R = \frac{\rho l}{A}$ seen [or implied by 2 nd mark]. (1)	
			$\frac{\Omega m^2}{m}$ seen (1)	
			Accept equivalent working in terms of showing homogeneity: 1 st mark insertion of units in equation; 2 nd mark explicit conclusion	2
	<i>(b)</i>	(i)	Convincing demonstration, e.g. $\pi \left(\frac{1.3 \times 10^{-3}}{2}\right)^2$ seen	1
		(ii)	$[Ans = 1.327 \times 10^{-9} \text{ m}^2]$ $n = 1.7 \times 10^{-8} \times 20$	1
		(iiii)	$R = \frac{1.3(\text{or } 1.33) \times 10^{-6}}{1.3(\text{or } 1.33) \times 10^{-6}} [= 0.26 \Omega]$	1
		(111)	$\frac{0.20(\text{ecr})}{14} \text{ [or correct use of parallel formula] (1) = 0.019 \Omega (1)}$	
		(iv)	If resistivity formula used, 1 st mark for $A \times 14$. Use of $P = I^2 R$ [or equiv, e.g. $P = IV$ and $V = IR$] (1)	2
			$\left(\frac{9 \times 0.26}{9 \times 0.19}\right) [\text{NB 9 not 3}] \text{ or } \left(\frac{I^2 R}{I^2 R/14}\right) (1)$	
		(v)	 Answer in range 13 – 14.5 : 1 (1) I. Less power loss in whole / larger cable [for a given current] / or smaller resistance [accept: if 1 strand breaks there will still be 	3
			continuity.] II. More flexible [or less prone to snap with repeat bending] /if 1	1
			strand breaks there will still be continuity [accept only once]	1
	(c)	(i) (ii)	$7.52 - 7.7 \times 10^{28} \text{ m}^{-3}$ Substitution in or re-arrangement of $I = nAve$ to give v:	1
			$v = \frac{I}{nAe}$ or $3.0 = 7.7 \times 10^{28} (\text{ecf}) \times 1.3 \times 10^{-6} \times 1.6 \times 10^{-19} v(1)$	
			[NB No ecf on <i>n</i> if 2.0×10^{24} used] $v = 1.9 \times 10^{-4} \text{ m s}^{-1}$ (1)	2
		(iii)	<i>I</i> , <i>n</i> and <i>e</i> do not change (1) <i>A</i> increased by \times 14 (1)	
			v reduced by same ration $\rightarrow 1.36 [1.4] \times 10^{-5} \text{m s}^{-1}.(1)$	3
				[17]

Question			Marking details	Marks Available
6	(a)	(i) (ii)	 V is the terminal p.d. – or clear explanation in energy terms: energy per coulomb delivered to external circuit / [NB "per coulomb" / "per unit charge" required on one of (i) and (ii) if energy explanation given] P.D. across the internal resistance [accept lost volts – "bod"] / energy 	1
			per coulomb lost / dissipated in the internal resistance / cell	1
	<i>(b)</i>	(i) (ii) (iii)	 2.4 V 0.4 Ω [allow e.c.f. from (b)(i)] e.g. "Drains" the cell <u>quickly</u>, Cell gets hot 	1 1 1
	(c)		Correct use of $I = \frac{E}{R_{\text{Tot}}}$ I = 1.0 A	2
	(d)		Trial and error acceptable: Use of $1 \times, 2 \times, 3 \times$ (1); corresponding total resistance (1); use of $\frac{V}{R}$ (1) leading to 5 cells (1)	
			Nice answer: Subst in $I = \frac{E}{R+r}$: $3.0 = \frac{2.4n}{2.0+0.4n}$ [ecf on $n \times 2$](1) Re-arrangement: $6.0 + 1.2n = 2.4n \rightarrow n = 5$	
			Marking points with analytical answer: $n \times 2.4$ (1) Use of total resistance = $2.0 + 0.4 n$ (1) V	
			Application of $I = \frac{1}{R}$ (1); $n = 5$ (1)	4
				[11]