PH4

Que	stion	Marking details	Marks Available
1	(a) (b)	Acceleration towards a fixed point [or central / equilibrium](1) and [directly] proportional to the distance from that point (1) Accept $a = -kx$ (1) with x defined	2
		Smooth curve drawn which extends at least to \pm 19.5 mm [i.e. beyond the extreme points] symmetrically on at least 2 extremes.	1
	(c)	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.5} [= 12.57 \text{ rad s}^{-1}]$	1
	(d) (e)	Either $v_{\text{max}} = r\omega \text{ [or by impl.] (1)} = 20 \times 10^{-3} \times 12.57$ $[r \text{ range } 19.5 - 21 \text{ mm}] = 0.25 \text{ m s}^{-1} \text{ (1)}$ Squaring $T = 2\pi \sqrt{\frac{m}{k}} \text{ i.e } T^2 = 4\pi^2 \frac{m}{k} \text{ or following substitution (1)}$ Substitution (1)	2
		Rearranging and answer: $k = 6.32 \text{ N m}^{-1}$	2
			[8]

Question			Marking details	Marks Available
2.	(a)		 Any 2 × (1) of: forces between molecules negligible [or no forces]/ molecules travel in straight lines between collisions ✓ volume [allow "size"] of molecules negligible / collision time small [cf time between collisions] ✓ molecules behave like perfectly elastically / have elastic collisions ✓ molecules exert forces [or pressure] on walls of container during collisions ✓ gasses consist of a large number of particles / molecules in random motion 	
	(b)		amount of gas, $n = \left[\frac{pV}{RT} = \frac{1.01 \times 10^5 \times (6 \times 5 \times 3)}{8.31 \times 293} = \right] 3730 \text{ mol (1)}$ no. of molecules $N = nN_A = 3730 \times 6.02 \times 10^{23} = 2.2 \times 10^{27} \text{ (1)}$	2
	(c)		$c_{\text{rms}} = \sqrt{\frac{350^2 + 420^2 + 550^2}{3}}$ (1) [or by impl.] = 448 m s ⁻¹ (1)	2
	(d)		Density $\rho = (1) \frac{M}{V} = \frac{3733 \times \frac{29}{1000}(1)}{90} [= 1.203 \text{ kg m}^{-3}].$ Use of $p = \frac{1}{3}\rho \overline{c^2}(1)$. $[c_{\text{rms}} = 502 \text{ m s}^{-1}]$. (1)	2
			(i.e. use of M/V (1); inserting ~3733 for n (1); relating M to Mr (1); use of $p = \frac{1}{3}\rho \overline{c^2}$ and substitution [or by impl.] (1))	4
	(e)	(i)	Time of travel $\sim 0.01 - 0.02$ s	1
		(ii)	No – time estimated is [far] too short (1) e.c.f from (i) Relay is much longer because of collisions between molecules [or equiv. eg takes time to diffuse / mean free path is very short] (1)	2
				[13]

Question			Marking details	Marks Available
3	(a)		ΔU = increase [accept change / difference] in <u>internal</u> energy [of the gas](1) Q = heat <u>supplied</u> [to] the gas (1) U = work done <u>by</u> the gas (1)	3
	(b)		Readings from graph: $p = 120 \pm 2.5 \text{ kPa}$; $V = 2.0 \times 10^{-3} \text{ m}$ (1) $T = \frac{pV}{nR} \text{ (1)} = \frac{120 \times 10^{3} \times 2.0 \times 10^{-3}}{0.1 \times 8.31} \text{ (1)} [= 289 / 290 \text{ K}]$	3
	(c)		Work Done = 'area' under graph (1) Any reasonable method used correctly to estimate area, (1) e.g 27×1 cm squares × 'area' of 1 cm square \rightarrow 169 J or [approximating AB to straight line] area $\sim 1.0 \times \frac{1}{2} \times [120 + 240]$ \rightarrow 180 \therefore a bit less than 180 J \sim 170 J.	2
	(d)	(i)	$\Delta V = 0$ along AP (1) So $W = p\Delta V = 0$ (1)	2
		(ii)	Work done on gas (1) = $p\Delta V$ = 240 J (1)	2
	(e)		Temperature at A and B are the same: $U_A = U_B$ so $\Delta U = 0$, so $Q = W$ [from 1 st law] (1)	2
			W is different for the two paths so Q is different. (1)	14
4.	(a)		Concentric equipotentials drawn (1) At least 3 outward radial electric field lines drawn symmetrically(1) [No labelling \rightarrow -1; no arrows on field lines \rightarrow -1]	2
	(b)	(i)	$KE = 8.3 \times 10^{-14} \text{ J}$	1
		(ii)	At closest approach, all KE lost [or by impl.] (1) KE lost [or PE gained] = $q\Delta V_{\rm E}$ (1)	
			$\Delta V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} (1)$	
			Subst, manip + ans $\rightarrow r = 1.6 \times 10^{-13}$ m (1) [e.c.f. on KE from (i)]	4
		(iii)	[It retraces its path] with electric PE decreasing (1) and KE increasing (1) or equiv.	2
		(iv)	Smooth symmetric curve drawn curving away from nucleus	1
				10

Question			Marking details	Marks Available
5.	(a)	(i) (ii) (iii) (iv)	N m ⁻² / Pa [or equiv.] Mass = $1.2 \times 2.0 \times 10^{-4} \times 1.00 \times 10^{3}$ [= 0.24 kg] Change in momentum = $[0 -] 0.24 \times 1.2 \checkmark$ [= -0.29 N s ~ 0.3 N s] Force = $\frac{\Delta mv}{t} = \frac{0.3(\text{e.c.f.})}{1} / 0.3$ N [equal and opposite force on wall implied] (1)	1 1 1
	(b)		Pressure = $\frac{F}{A} = \frac{0.3}{2.0 \times 10^{-4}} = 1500 \text{ Pa } [1450 \text{ Pa if } 0.29 \text{ N s used}] (1)$ $\lambda = 660 \times 10^{-9} \text{ m } [\text{or equiv - unit conversion}] (1)$	2
			$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{660 \times 10^{-9}} \text{ (1) [e.c.f. on unit conv.]} = 1.0 \times 10^{-27} \text{ N s (1)}$ Photon energy $E = hf = \frac{hc}{\lambda} \text{ (1)} = 3.01 \times 10^{-19} \text{ J [or by impl.]}$	3
			Number of photons in 1 s = $\frac{\text{Power}}{\text{energy of 1 photon}}$ (1) [= 3.32 × 10 ¹³] Force = $\frac{\Delta p}{t}$ = 3.32 × 10 ⁻¹² N (1) [e.c.f. if only 1 photon used]	
			Pressure = 3.3×10^{-6} Pa (1) [NB $F = \frac{P}{c} \rightarrow 1$ st 3 marks by impl] [If pressure = 1×10^{-21} Pa given specified "per photon" – or equiv –	4
			then 1 mark]	[12]

Question		Marking details	Marks Available
6	(a)	$r = 1.0 \times 10^8 \text{ m [unit conversion] (1)}$ $g = \frac{GM_E}{r^2} = \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{(1.0 \times 10^8)^2} \text{ (1) [e.c.f. for this mark only]}$	
		= 0.04 N kg ⁻¹ , Statement "agreement with graph" or equiv (1)	2
	(b)	Moon has a [much] smaller <u>mass</u> than the Earth. [or converse]	1
	(c)	$3.45 \ [\pm 0.05] \times 10^5 \ \text{km}$ (from graph) (1) No resultant gravitational field [or fields of Earth and Moon equal and opposite] or fields balance at this point. [or equiv](1)	2
	(d)	From M to point of intersection / at start $F_{moon} > F_{earth}$ (1) At point of intersection: $F_{moon} = F_{earth}$ (1) From point of intersection to earth / at end $F_{earth} > F_{moon}$ (1) [- 1 for fields rather than forces; - 1 not using resultant at least once]	3
	(e)	More (1) because gravitational fields of Earth and Moon <u>reinforce</u> [or equiv] and act towards centre of moon <u>opposite to rocket motion</u> . (1) Or [if considering escape from the E/M system] Less because of initial greater PE [less negative] due to Earth's field.	2
			[11]

Question			Marking details	Marks Available
7.	(a)		$T = 1090 \times 24 \times 60 \times 60 = 9.42 \times 10^7 \text{ s}$ [unit conversion] (1) $r_S = \frac{Tv_S}{2\pi}$ (1) or equiv e.g. $v = \frac{d}{t}$ and $d \pi r = 6.82 \times 10^8 \text{ m}$ (1)	3
	(b)	(i)	$T = 2\pi \sqrt{\frac{d^3}{G(M_S + M_P)}} \text{ (equation selection) (1) [or by impl]}$	
			$(M_{\rm S} >> M_{\rm P})$ [or by impl] $\rightarrow T = 2\pi \sqrt{\frac{d^3}{GM_{\rm S}}}$ (1) $d = \sqrt[3]{\frac{T^2GM_{\rm S}}{4\pi^2}}$ (rearrangement) (1) [or with numbers]	4
		(ii)	Substitution and convincing calculation(1) [to give = 3.21×10^{11} m] Use of $M_P = \frac{M_s r_s}{d}$ [in any orientation] or $m_1 r_1 = m_2 r_2$ (1)	
	(c)		$= \frac{2.2 \times 10^{30} \times 6.8 \times 10^{8}}{3.2 \times 10^{11}} = 4.7 \times 10^{27} \text{ kg (1)}$ Find $\Delta \lambda$ in star's spectral lines arising from motion of star / Doppler	2
			shift (1) Find velocity of star using $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$	2
				[11]