Mark Scheme 4722
 June 2006

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \& \((3 x-2)^{4}=81 x^{4}-216 x^{3}+216 x^{2}-96 x+16\) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 4 \& \begin{tabular}{l}
Attempt binomial expansion，including attempt at coeffs． \\
Obtain one correct，simplified，term \\
Obtain a further two，simplified，terms \\
Obtain a completely correct expansion
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} \& （i） \& \(u_{2}=-1, u_{3}=2, u_{4}=-1\) \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2 \& \begin{tabular}{l}
For correct value－1 for \(u_{2}\) \\
For correct values for both \(u_{3}\) and \(u_{4}\)
\end{tabular} \\
\hline \& （ii） \& Sum is \((2+(-1))+(2+(-1))+\ldots+(2+(-1))\) i．e． \(50 \times(2+(-1))=50\) \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
For correct interpretation of \(\Sigma\) notation For pairing，or \(50 \times 2-50 \times 1\) \\
For correct answer 50
\end{tabular} \\
\hline 3 \& \& \begin{tabular}{l}
\[
y=4 x^{\frac{1}{2}}+c
\] \\
Hence \(5=4 \times 4^{\frac{1}{2}}+c \Rightarrow c=-3\) \\
So equation of the curve is \(y=4 x^{\frac{1}{2}}-3\)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \sqrt{ } \text { V } \\
\& \text { A1 }
\end{aligned}
\] \& 6 \& \begin{tabular}{l}
For attempt to integrate \\
For integral of the form \(k x^{\frac{1}{2}}\) \\
For \(4 x^{\frac{1}{2}}\) ，with or without \(+c\) \\
For relevant use of \((4,5)\) to evaluate \(c\) \\
For correct value－3（or follow through on integral of form \(k x^{\frac{1}{2}}\) ） \\
For correct statement of the equation in full（aef）
\end{tabular} \\
\hline \multirow[t]{2}{*}{4} \& （i） \& Intersect where \(x^{2}+x-2=0 \Rightarrow x=-2,1\) \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1
\end{aligned}
\] \& 2 \& For finding \(x\) at both intersections For both values correct \\
\hline \& （ii） \& \begin{tabular}{l}
Area under curve is \(\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{1}\) \\
i．e．\(\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)=9\) \\
Area of triangle is \(41 / 2\) \\
Hence shaded area is \(9-41 / 2=41 / 2\) \\
OR \\
Area under curve is \(\int_{-2}^{1}\left(2-x-x^{2}\right) \mathrm{d} x\)
\[
\begin{aligned}
\& =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]_{-2}^{1} \\
\& =\left(-\frac{1}{3}-\frac{1}{2}+2\right)-\left(\frac{8}{3}-2-4\right) \\
\& =4 \frac{1}{2}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 6

8 \& | For integration attempt with any one term correct For use of limits－subtraction and correct order |
| :--- |
| For correct area of 9 |
| Attempt area of triangle（ $1 / 2 b h$ or integration） |
| Obtain area of triangle as $41 / 2$ |
| Obtain correct final area of $41 / 2$ |
| Attempt subtraction－either order |
| For integration attempt with any one term correct Obtain $\pm\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]$ |
| For use of limits－subtraction and correct order Obtain $\pm 41 / 2$－consistent with their order of subtraction |
| Obtain $41 / 2$ only，following correct method only |

\hline
\end{tabular}

