PH4

Question		on	Marking details	Marks Available
1.	(a)		[In any interaction] the [vector] sum of bodies' momenta [accept 'total momentum'] stays constant (1), provided no [resultant] external force acts [accept: in a closed system] (1) NB. Separate marks but statement of conservation of energy loses both marks.	2
	<i>(b)</i>	(i)	$1.67 \times [10^{-27}] \times 3150 \pm 9.98 \times [10^{-27}] \times 225 = 11.6 \times [10^{-27}] v$ (1) $[10^{-27}] \text{ consistently dropped or masses given as } 1, 6, 7 \checkmark]$ With minus sign (i.e. signs correct) (1) $v = 260 \text{ m s}^{-1}$ (1) [no ecf]	
		(ii)	Arrow to right (1) Σ KE initially = 8.54 × 10 ⁻²¹ J (1)	4
			Σ KE finally = 3.92 × 10 ⁻²¹ J (1) [Correct answer other than powers of 10 → 1 mark]	2
	(c)		$\Delta mv = \frac{h}{\lambda} \text{ or } v = \frac{h}{\lambda m} \text{ (1) [or } \frac{h}{\lambda} = 3.88 \times 10^{-21} \text{ [Ns]]}$ $v = 3.3 \times 10^5 \text{ m s}^{-1} \text{ (1)}$ [No penalty for attempts to include initial momentum (which is $3.0 \times 10^{-24} \text{ Ns)}$]	2
				10

Question			Marking details	Marks Available
2.	(a)	(i)	Relevant comment, e.g. stem suggests not at equilibrium when released / graph shows equilibrium at $t = 0$ / graph contradicts stem	1
		(ii)	I. 0.08 m (1) II. 1.2 s (1)	1 1
	(b)		$k = \frac{4\pi^2 m}{T^2}$ (1) [correct transposition at any stage] = 11 N m ⁻¹ (1) ((unit including any SI equivalent))	2
	(c)	(i)	$\{\omega = 5.24 \text{ rad s}^{-1}\}\ $ or $\{\text{use of } v_{\text{max}} = \frac{2\pi A}{T} \text{ [or equiv]}\}(1)$	
		(ii)	$v_{\text{max}} = 0.42 \text{ m s}^{-1} \text{ [accept } v_{\text{max}} = 0.080 \times 5.24] + \text{comment (1)}$ [Full marks available for use of tangent $\rightarrow T = 0.42 \pm 0.7 \text{ m s}^{-1}$] Correct sequence of v values (i.e. correct phase) (1)	2
		(11)	t values correct, and reasonable curve plotted (1)	2
	(d)	(i)	I. – [or "decrease"] (1) 0.035 J [± 0.003 J] (1) II. – 0.31 J [±0.01 J] NB Correct sign required.	2
		(ii)	[0.35J of] elastic [potential] energy gained (1) [Accept: [more] energy stored in spring [at 0.9s]]	1
	(e)	(i) (ii)	ordinate labelled "amplitude" and abscissa labelled "frequency" ϕ is [close to] the natural frequency [or by implication] (1) [NB not resonant frequency]	1
			0.83 Hz (1) [e.c.f. from (a) (ii)(II)]	2
				16

Question			Marking details	Marks Available
3.	(a)	(ii)	I. $\overline{c^2} = \frac{3p}{\rho}$ (1) [transposition at any stage] $= \frac{3 \times 100 \times 10^3 \times 1.5 \times 10^{-3}}{2.4 \times 10^{-3}}$ (1) [correct substitution or by implication] $\sqrt{\overline{c^2}} = 433 \text{ m s}^{-1}$ (1) [Wrong attempts based on $pV = \frac{1}{3}Nm\overline{c^2}$ can score the last mark if $\sqrt{}$ correctly taken] II. collisions ["random process" not enough] III. $935^2 + 743^2 + 312^2$ [= 1.52×10^6] (1) Division of sum by 3 even if $\frac{935 + 743 + 312}{3}$ [= 663 m s^{-1}] (1) $C_{\text{rms}} = 712 \text{ m s}^{-1}$ (1) [no ecf] I. $T = \frac{pV}{nR}$ (1) [transposition at any stage] $T = 301 \text{ K or } \{\frac{100 \times 10^3 \times 1.5 \times 10^{-3}}{0.050 \times 8.31} = 300 \text{ K or } 301 \text{ K}\}$ (1) II. $N = 3.6 \times 10^{22}$ III. $rmm = \frac{2.4}{0.0600}$ (1) [award mark even if $2.4 \times$ used] = 40 (1) [NB no unit penalty]	3 1 3 2 1
	(b)	(i) (ii)	Attempt to find area under AB / use of $p\Delta V$ [or by implication] (1) 100 J (1) Either $T_{\rm B} = 500 \text{ K (1) [or by impl.]}$ $U_{\rm B} = 374 \text{ J or } U_{\rm A} = 224 \text{ J (1)}$ [or by impl.] $\Delta U = 150 \text{ L (1)}$ $\Delta U = \frac{3}{2} p\Delta U$ (1) [or by impl.]	2
		(iii) (iv)	$\Delta U = 150 \text{ J (1)}$ $= 150 \text{ J (1)}$ 250 J [e.c.f.] [U falls by 150 J and because the volume doesn't change] no work involved $/Q = \Delta U(1)$	3 1
			150 J (1) [ecf on answer to (ii)]	2
				20

Q	uestic	on	Marking details	Marks Available
4.	(a)	(i) (ii)	Arrows shown at P away from both the two charges [Resultant shown \rightarrow ignore; other arrows shown in other directions \rightarrow s.i.f.] E at P due to one charge = $\frac{7.0 \times 10^{-12}}{4\pi \times 8.85 \times 10^{-12} \times (0.38)^2} \text{ N C}^{-1}(1)$ [= 0.44 N C ⁻¹]	1
			[Accept $9.0 \times$ [F ⁻¹ m] for $\frac{1}{4\pi\varepsilon_0}$; treat 0.31 m as slip: give first mark] Multiplication by $\cos 55^\circ$ Multiplication by 2 (1) NB These 2 marks available for clear working to calculate force on a charge placed at P; 0.38 m must be used.	
			$E_{\rm res} = 0.50 \ {\rm N \ C^{-1}} \ {\rm or} \ 0.50 \ {\rm V \ m^{-1}} \ (({\rm unit})) \ (1)$ [Award last mark for 0.25 N C ⁻¹ but not for other mistake] NB. Direction not required. Use of 45° rather than 55° [i.e. Es at right angles $\rightarrow 1^{\rm st}$ and $3^{\rm rd}$ marks available].	4
		(iii)	 I. Fields from charges cancel (1) [or equivalent, e.g. fields from charges are equal and opposite] II. Coulomb's law or inverse square law (however stated) [holds for individual charges] 	1 1
	<i>(b)</i>	(i)	Force on ion $= 4.8 \times 10^{-19} \text{ C} \times 0.50 \text{ N C}^{-1} \text{ (1) (ecf) [or by impl.]}$ $= 2.4 \times 10^{-19} \text{ N}$ $= \frac{2.4 \times 10^{-19} \text{ N}}{4.5 \times 10^{-26} \text{ kg}} = 5.3 \times 10^6 \text{ m s}^{-2} \text{ (1) ((unit)) (ecf)}$	
		(ii)	applies within this calculation on the incorrect force) Speed never decreases [accept: always accelerates](1) [or by implication] Speed increases at greatest rate where Eres graph peaks (1)	2
		(iii)	[or equivalent] $PE = q \frac{Q}{4\pi\varepsilon_0 r} \times 2 (1) \text{[or by implication]}$	2
			$= 1.95 \times 10^{-19} \text{ J (1)} \qquad \text{[or by implication]}$ $\text{KE} = 9.0 \times 10^{-20} \text{ J (1)} \qquad \text{[independent mark]}$ $\text{Total} = 2.85 \times 10^{-19} \text{ J (1)} \qquad \text{[no general e.c.f. but use of } r^2 \rightarrow \text{no}$ $\text{ecf; use of 0.38 m only loses } 2^{\text{nd}} \text{ mark; use of incorrect charge}$ $\text{loses } 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ marks]}$	
		(iv)	[Omission of factor of 2 penalised only once $\rightarrow 1.88 \times 10^{-19}$ J] At large distance, PE negligible / KE _{max} = Total energy at 0 (1) [or by impl.] $\frac{1}{2} mv^2 = 2.85 \times 10^{-19}$ J (1) e.c.f. [or by impl.]	4
			$v_{\text{max}} = 3600 \text{ m s}^{-1} (1)$	3
				18

Question			Marking details	Marks Available
5.	(a)	(i)	IEllipse stated and shown (1)	
			with star at one focus stated or shown (1) II. Faster when closer to the star (1) Equal areas in equal intervals of time stated and shown (1)	2
		(ii)	I. $\frac{GMm}{r^2} = \frac{mv^2}{r} \qquad [Accept \frac{GM}{r^2} = \frac{v^2}{r}]$	2
		(iii)	$\left[\frac{GMm}{r^2} = mr\omega^2 \text{ acceptable only if } \omega = \frac{v}{r} \text{ explicitly involved,} \right]$ with clear algebra II. Planet wouldn't orbit centre of star / planet [and star] orbit centre of mass [or equiv.] (1)	1
			We'd need $\frac{GMm}{d^2} = \frac{mv^2}{r}$ [in which $\mathbf{d} \neq \mathbf{r}$] (1) [or equivalent]	2
	(b)	(i)	I. $v = c \frac{\Delta A}{\lambda}$ with evidence of correct use (1) [e.g. substitutions with no more than numerical slips] $v_A = 9.5[1] \times 10^5 \text{ m s}^{-1}$, and $v_B = 5.3[0] \times 10^5 \text{ m s}^{-1}$ (1)	2
		(ii) (iii)	II. $v = 7.4 \times 10^5 \text{ m s}^{-1}$ III. $v_{\text{rot}} = 2.1 \times 10^5 \text{ m s}^{-1}$	1
	(c)		I. $M = \frac{v^2 r}{G}$ (1) [transposition at any stage] Substitution of v , r pair from <u>dotted</u> graph (1) $M = 1.1 \times 10^{41}$ kg (1) [e.c.f on slips in reading <u>dotted</u> graph] Slips in powers of 10 penalised by only 1 mark. II. Any $2 \times (1)$ from Mass larger than 1.1×10^{41} kg / actual mass large than theoretical [or M] (\checkmark) $v = \sqrt{\frac{GM}{r}}$ assumes the mass is central (\checkmark)	3
			Mass distributed [however expressed] (\checkmark)	2
				18