

## Mark Scheme (Results) Summer 2007

**GCE** 

**GCE Mathematics** 

Statistics S3 (6691)





## June 2007 6691 Statistics S3 Mark Scheme

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                           | Marks                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1.<br>(a)          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                           | M1A1                             |
|                    | $\sum d^2 = 32$                                                                                                                                                                                                                                                                                  | M1A1                             |
|                    | $r_S = 1 - \frac{6 \times 32}{8 \times (8^2 - 1)}$                                                                                                                                                                                                                                               | M1                               |
|                    | $=\frac{13}{21}$ or AWRT 0.619                                                                                                                                                                                                                                                                   | A1 (6)                           |
| (b)                | $H_0: \rho = 0$ $H_1: \rho > 0$ $(\rho_s \text{ is OK})$ both $r_S$ 1 tail 5% critical value is 0.6429 (Independent of their $H_1$ ) $0.619 < 0.6429$ or not significant So insufficient evidence of a positive correlation between judges competitor $\underline{is}$ justified                 | B1 B1 (± is OK) M1 A1f.t. (4) 10 |
| (a)                | $1^{\text{st}}$ M1 for attempting to rank both $P$ and $Q$ .<br>$1^{\text{st}}$ A1 for both correct (could be reversed)<br>$2^{\text{nd}}$ M1 for attempting $d^2$<br>$2^{\text{nd}}$ A1 for $\sum d^2 = 32$ .<br>$3^{\text{rd}}$ M1 for correct use of formula for $r_S$                        |                                  |
| (b)                | M1 for a correct comparison or statement about significance (o.e.) Follow through their $r_s$ provided $0 < r_s < 1$                                                                                                                                                                             |                                  |
|                    | A1f.t. for a conclusion in context. Must mention judges or marks or competitor. If they use correlation they must say it is positive. Follow through their positive $r_s$ with their positive c.v. and ignore hypothems So $r_s = 0.667$ they could say competitor's claim is not justified etc. | eses.                            |
| S.C.               | No ranking Typical answer (-3.82) can get mark for use of $r_s$ formula and hypothe (a) M0A0M0A0M1A0 (b) B1B1M0A0                                                                                                                                                                                | ses in (b) only                  |

| Question<br>number | Scheme                                                                                                                                                                         | Marks             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>2.</b> (a)      | $H_0$ : Maths grades are independent of English grades or No association                                                                                                       |                   |
|                    | $H_1$ : Maths and English grades are dependent <u>or</u> There is an association                                                                                               | B1                |
|                    | Expected Frequencies e.g. $\frac{60 \times 40}{120} = 20$ $\frac{20}{27.5} = \frac{27.5}{12.5}$                                                                                | M1 A1             |
|                    | $\sum \frac{(O-E)^2}{E} = 2 \times \left(\frac{5^2}{20} + \frac{2.5^2}{27.5} + \frac{2.5^2}{12.5}\right), = 3.9545$ AWRT <u>3.95</u> or <u>3.955</u>                           | M1, A1            |
|                    | $v = (3-1)(2-1) = 2;$ $\chi_2^2(10\%) \text{ c.v.} = 4.605$                                                                                                                    | B1; B1            |
|                    | $3.95 < 4.605$ or not significant or do not reject $H_0$ (allow reject $H_1$ )                                                                                                 | M1                |
|                    | Insufficient evidence of an association between English and maths grades  or there is support for the Director's belief  Student's grades in maths and English are independent | A1 (9)            |
| (b)                | May have some expected frequencies <5 (and hence need to pool rows/cols)                                                                                                       | B1 (1)            |
| (a)                | 1 <sup>st</sup> B1 for both hypotheses in terms of independence or association and in context                                                                                  |                   |
|                    | Must mention Maths and English in at least one of the hypotheses.                                                                                                              |                   |
|                    | "relationship" or "correlation" or "connection" or "link" is B0                                                                                                                |                   |
|                    | 1 <sup>st</sup> M1 for some correct calculation seen                                                                                                                           |                   |
|                    | 1 <sup>st</sup> A1 for all expected frequencies correct. Accept answers without formula seen                                                                                   |                   |
|                    | 2 <sup>nd</sup> M1 for some evidence seen of attempt to calculate test statistic.                                                                                              |                   |
|                    | At least one correct term seen. Follow through their expected frequencies.                                                                                                     |                   |
|                    | 2 <sup>nd</sup> A1 for AWRT 3.95. Answers only please escalate!                                                                                                                |                   |
|                    | $3^{rd}$ M1 for correct comparison or statement – may be implied by correct conclusio                                                                                          | n.                |
|                    | 3 <sup>rd</sup> A1 for conclusion in context using "association" or "independence" in connec                                                                                   | tion with grades. |
|                    | Don't insist on seeing English or maths mentioned here.                                                                                                                        |                   |
|                    | Use ISW for comments if a false statement and correct statement are seen.                                                                                                      |                   |
| (b)                | B1 If they just say expected frequencies are "small" they must go onto mentio                                                                                                  | n need to pool.   |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                               | Marks  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| 3.                 | $H_0: \mu = 18, \qquad H_1: \mu < 18$                                                                                                                                                                                                                                                                                                | B1, B1 |  |
|                    | $z = \frac{16.5 - 18}{3 / \sqrt{15}} = -1.9364$ AWRT – 1.94                                                                                                                                                                                                                                                                          | M1, A1 |  |
|                    | 5% one tail c.v. is $z = (-)$ 1.6449 or probability (AWRT 0.026) ( $\pm$ ) 1.6449                                                                                                                                                                                                                                                    | B1     |  |
|                    | - $1.94 < -1.6449$ or significant or reject $H_0$ or in critical region                                                                                                                                                                                                                                                              | M1     |  |
|                    | There is evidence that the (mean) time to complete the puzzles has reduced                                                                                                                                                                                                                                                           |        |  |
|                    | Or Robert is getting faster (at doing the puzzles)                                                                                                                                                                                                                                                                                   | A1f.t. |  |
|                    | 1st o and D1                                                                                                                                                                                                                                                                                                                         | 7      |  |
|                    | 1 <sup>st</sup> & 2 <sup>nd</sup> B1 must see and 18                                                                                                                                                                                                                                                                                 |        |  |
|                    | 1 <sup>st</sup> M1 for attempting test statistic, allow $\pm$ . Or attempt at critical value for $\overline{X}$ : $\mu - z \times \frac{3}{\sqrt{15}}$                                                                                                                                                                               |        |  |
|                    | 1 <sup>st</sup> A1 for AWRT – 1.94. Allow use of $ z  = +1.94$ to score M1A1. Or critical value = AWRT 16.7                                                                                                                                                                                                                          |        |  |
|                    | $3^{rd}$ B1 for AWRT 0.026 (i.e. correct probability only) or $\pm$ 1.6449. (May be seen in cv formula)                                                                                                                                                                                                                              |        |  |
|                    | <ul> <li>2<sup>nd</sup> M1 for correct comparison or statement relating their test statistic and 1.6449 or their probabilition and 0.05. Ignore their hypotheses if any or assume they were correct.</li> <li>2<sup>nd</sup> A1f.t. for conclusion in context which refers to "speed" or "time". Depends only on previous</li> </ul> |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                      |        |  |

| Question<br>number | Scheme                                                                                                   | Marks                  |  |
|--------------------|----------------------------------------------------------------------------------------------------------|------------------------|--|
| I                  | 17+31+ (100 ) $20$ — 20                                                                                  | M1, A1 (2)             |  |
| (b)                | e.g. $r = 100 \times {20 \choose 2} (0.1)^2 (0.9)^{18}$                                                  | M1                     |  |
|                    | $r = 28.5, \ s = AWRT 9$                                                                                 | A1, A1 (3)             |  |
| (c)                | $\begin{bmatrix} x & 0 & 1 & 2 & 3 & \geq 4 \end{bmatrix}$                                               |                        |  |
|                    | 0 17 31 19 14 19                                                                                         | 3.61                   |  |
|                    | $E_i$   12.2   27.0   28.5   19.0   13.3   Pooling                                                       | M1                     |  |
|                    |                                                                                                          |                        |  |
|                    |                                                                                                          |                        |  |
|                    | $\sum \frac{(O-E)^2}{E} = AWRT 9.4$                                                                      | M1A1c.a.o.             |  |
|                    | $v = 5 - 2 = 3$ , $\chi_3^2(5\%) = 7.815$                                                                | B1ft, B1ft             |  |
|                    | $H_0$ : Binomial distribution is a good/suitable model/fit [Condone: B(20, 0.1) is]                      |                        |  |
|                    | H <sub>1</sub> : Binomial distribution is not a suitable model both                                      | B1                     |  |
|                    | (Significant result) Binomial distribution is not a suitable model                                       | A1cao (7)              |  |
| (d)                | defective items do <u>not occur independently</u> <u>or</u> <u>not with constant probability</u>         | B1ft (1)               |  |
|                    |                                                                                                          | 13                     |  |
| (a)                | M1 for attempt to find mean or $\hat{p}$ (as printed or better). The 0.1 must be seen in                 | n part (a).            |  |
| (b)                | M1 for correct expression for $r$ or $s$ using the binomial distribution. Follow through                 | ough their $\hat{p}$ . |  |
| (c)                | 1 <sup>st</sup> M1 for some pooling (accept $x \ge 5$ , obs.freq14, 9, 10 and exp.freq. 19.0, $s$ , 4.3) |                        |  |
|                    | $2^{\text{nd}}$ M1 for calculation of test statistic (N.B. $x \ge 5$ gives 14.5). One correct term seen  | n.                     |  |
|                    | 1 <sup>st</sup> B1ft for number of classes $-2$ (N.B. $x \ge 5$ will have $6 - 2 = 4$ )                  |                        |  |
|                    | $2^{\text{nd}}$ B1ft for the appropriate tables value, ft their degrees of freedom. (NB $\chi_4$         | (5%) = 9.488           |  |
|                    | $3^{\text{rd}}$ B1 (for hypotheses) allow just " $X \sim B(20, 0.1)$ " for null etc.                     |                        |  |
|                    | 2 <sup>nd</sup> A1 for correctly rejecting Binomial model. No ft and depends on 2 <sup>nd</sup> M        | [1.                    |  |
| (d)                | B1ft for independence or constant probability – must mention defective items or                          | defectives             |  |
|                    | Follow through their conclusion in (c). So if they do not reject they may sa                             | y "defectives          |  |
|                    | occur with probability 0.1". Stating the value implies constant probability.                             |                        |  |
|                    |                                                                                                          |                        |  |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks  |     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| <b>5.</b> (a)      | $\hat{\mu} = \overline{x} = \frac{361.6}{80}, = \underline{4.52}$ $\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1, A1 |     |
|                    | $\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1A1ft |     |
|                    | AWRT <u>1.51</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1     | (5) |
| (b)                | $H_0: \mu_A = \mu_B \qquad H_1: \mu_A > \mu_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 B1  |     |
|                    | Denominator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1     |     |
|                    | $z = \frac{4.52 - 4.06}{\sqrt{\frac{1.51}{80} + \frac{2.50}{60}}} = \left(\frac{0.46}{\sqrt{0.0605}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dM1    |     |
|                    | = (+) 1.8689 AWRT $(+) 1.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1     |     |
|                    | One tail c.v. is $z = 1.6449$ (AWRT 1.645 or probability AWRT 0.0307 or 0.0308)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1     |     |
|                    | (significant) there is evidence that diet $A$ is better than diet $B$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |     |
|                    | evidence that (mean) weight lost in first week using diet $A$ is more than with $B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1ft   | (7) |
| (c)                | CLT enables you to assume that $\overline{A}$ and $\overline{B}$ are normally distributed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1     | (1) |
| (d)                | Assumed $\sigma_A^2 = s_A^2$ and $\sigma_B^2 = s_B^2$ (either)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1     | (1) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14     |     |
| (a)<br>(b)         | $2^{\mathrm{nd}}$ M1 for a correct attempt at $s$ or $s^2$ , A1ft for correct expression for $s^2$ , ft their mean.  N.B. $\sigma^2_n = 1.49$ so $\frac{80}{79} \times 1.49$ is M1A1ft $1^{\mathrm{st}}$ B1 can be given for $\mu_1 = \mu_2$ , but $2^{\mathrm{nd}}$ B1 must specify which is $A$ or $B$ . $1^{\mathrm{st}}$ M1 for the denominator, follow through their 1.51.  Must have square root can condone $2.50^2$ but $\sqrt{\frac{1.51^2}{80} + \frac{2.50^2}{60}}$ is M0.  Allow $\sqrt{\frac{1.51}{79} + \frac{2.50}{59}}$ leading to AWRT 1.85 to score M1M1A0 in (b) and can score in (d). $2^{\mathrm{nd}}$ dM1 for attempting the correct test statistic, dependent on denominator mark $1^{\mathrm{st}}$ A1 for AWRT $\pm$ 1.87, may be implied by a correct probability. $2^{\mathrm{nd}}$ A1ft ft their test statistic vs their cv <b>only if</b> $H_1$ is correct and both Ms are scored |        |     |
| (c)<br>(d)         | B1 for stating <u>either</u> $\overline{A}$ or $\overline{B}$ (but not $A$ or $B$ ) are normally distributed for either, can be stated in words in terms of variances or standard deviatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns.    |     |

| Question<br>number | Scheme                                                                                        | Marks         |
|--------------------|-----------------------------------------------------------------------------------------------|---------------|
| 6.                 | $\overline{x} = \frac{1}{2} (123.5 + 154.7) = 139.1$                                          | B1            |
|                    | 2.5758                                                                                        | B1            |
|                    | "their 2.5758" $\frac{\sigma}{\sqrt{n}}$ = 154.7 - 139.1 = 15.6                               | M1            |
|                    | AWRT 1.96                                                                                     | B1            |
|                    | "their 1.96" $\frac{\sigma}{\sqrt{n}} = \frac{15.6 \times 1.96}{2.5758} = (11.87)$            | M1            |
|                    | So 95% C.I. = 139.1 ± 11.87= (127.22, 150.97) AWRT (127, 151)                                 | A1 <b>6</b>   |
|                    | $1^{\text{st}}$ B1 for mean = 139.1 only                                                      | <u> </u>      |
|                    | 1 <sup>st</sup> M1 for UL – mean or mean – LL set equal to z value times standard error or so | me equivalent |
|                    | expression for standard error. Follow through their 2.5758 provided a z va                    | lue.          |
|                    | May be implied by $\frac{\sigma}{\sqrt{n}} = 6.056$ [N.B. $\frac{15.6}{2.3263} = 6.705$ ]     |               |
|                    | Condone poor notation for standard error if it is being used correctly to fine                | d CI.         |
|                    | 2 <sup>nd</sup> M1 for full method for semi-width (or width) of 95% interval                  |               |
|                    | Follow through their z values for both M marks                                                |               |
|                    | N.B. Use of 2.60 instead of 2.5758 should just lose 2 <sup>nd</sup> B1 since it leads to AWR' | Γ (127, 151)  |
|                    |                                                                                               |               |
|                    |                                                                                               |               |
|                    |                                                                                               |               |
|                    |                                                                                               |               |
|                    |                                                                                               |               |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 7. (a)             | Let $X = L - 4S$ then $E(X) = 19.7 - 4 \times 4.9 = 0.1$<br>$Var(X) = Var(L) + 4^2 Var(S) = 0.5^2 + 16 \times 0.2^2$<br>= 0.89<br>P(X > 0) = [P(Z > -0.10599)]<br>= AWRT $(0.542 - 0.544)$                                                                                                                                                                                                                                                                                                                                                               | M1, A1<br>M1, M1<br>A1<br>M1<br>A1 (7) |
| (b)                | $T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.16)<br>T - N(19.6, 0.16) $E(T) = 19.6Var(T) = 0.16 \text{ or } 0.4^2$                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| (c)                | Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.1]$ $Var(Y) = Var(L) + Var(T) = [0.41]$ Require $P(-0.1 < Y < 0.1)$ $= P(Z < 0) - P(Z < -0.31)$ or $0.5 - P(Z < -0.31)$ or $P(Z < 0.31) - P(Z < 0)$ $= 0.1217$ (tables) or $0.1226$ (calc)   AWRT $(0.122 - 0.123)$                                                                                                                                                                                                                                                                                             | M1<br>M1<br>M1<br>M1<br>A1 (5)         |
| (a)                | $1^{\text{st}}$ M1 for defining $X$ and attempting $E(X)$ $1^{\text{st}}$ A1 for 0.1. Answer only will score both marks. $2^{\text{nd}}$ M1 for $\text{Var}(L) + \dots$ $3^{\text{rd}}$ M1 for $\dots 4^2$ Var( $S$ ). For those who don't attempt $L - 4S$ this will be their only $2^{\text{nd}}$ A1 for 0.89 $4^{\text{th}}$ M1 for attempting a correct probability, correct expression and attempt to find, involve some standardisation: ft their $\sqrt{0.89}$ and their 0.1.  If 0.1 is used for $E(X)$ answer should be $> 0.5$ , otherwise M0. |                                        |
| (c)                | $1^{\text{st}}$ M1 for a correct method for E( <i>Y</i> ), ft their E( <i>T</i> ). $2^{\text{nd}}$ M1 for a correct method for Var( <i>Y</i> ), ft their Var( <i>T</i> ). Must have +. $3^{\text{rd}}$ M1 for dealing with the modulus and a correct probability statement. Must be May be implied by e.g. $P(Z < \frac{0.2}{\sqrt{\text{their } 0.41}}) - 0.5$ , or seeing both 0.378 (or 0.4th M1 for correct expression for the correct probability, as printed or better. E.g. 0.4th M1 for AWRT in range.                                           | 0.622) <u>and</u> 0.5                  |