WFM03/01: I	Further Pure	Mathematics F3
-------------	--------------	----------------

Question Number	Scheme	Marks
5(a)	$\frac{dy}{dx} = 2\operatorname{ar}\cosh\left(3x\right) \times \frac{3}{\sqrt{9x^2 - 1}}$	M1A1A1
	$\sqrt{9x^2 - 1}\frac{dy}{dx} = 6\operatorname{ar}\cosh\left(3x\right)$	
	$\left(9x^2 - 1\right)\left(\frac{dy}{dx}\right)^2 = 36\left(\operatorname{ar}\cosh\left(3x\right)\right)^2$	dM1
	$(9x^2-1)\left(\frac{dy}{dx}\right)^2 = 36y$ *	A1 (5)
(b)	$\left\{18x\left(\frac{dy}{dx}\right)^2 + \left(9x^2 - 1\right) \times 2\frac{dy}{dx} \times \frac{d^2y}{dx^2}\right\} = 36\frac{dy}{dx}$	M1 {A1} A1
	$\left(9x^2 - 1\right)\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} = 18 \qquad \bigstar$	A1 (4)
		9

Question Scheme Marks Number 6(a) $(0 \ 3)(6)$ (6) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ k & 0 & 1 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \end{vmatrix} = \lambda \begin{vmatrix} 0 \\ 1 \\ 6 \end{vmatrix}$ $\begin{pmatrix} 24 \\ 4 \end{pmatrix} = \begin{pmatrix} 6\lambda \\ \lambda \end{pmatrix}$ Uses the first or second row to obtain $\lambda = 4$ M1A1 (2) Uses the third row and their $\lambda = 4$ to obtain **(b)** M1 A1 (2) $6k+6=24 \Rightarrow k=3$ ***** $\begin{vmatrix} 1 - \lambda & 0 & 3 \\ 0 & -2 - \lambda & 1 \\ 3 & 0 & 1 - \lambda \end{vmatrix} = 0$ (c) $\Rightarrow (1-\lambda)((-2-\lambda)(1-\lambda)-0) - 0(0(1-\lambda)-3) + 3(0-3(-2-\lambda)) = 0$ M1 A1 $\Rightarrow (1-\lambda)(-2-\lambda)(1-\lambda) + 9(2+\lambda) = (2+\lambda)(9-(1-\lambda)^2) = 0(\lambda^3 - 12\lambda - 16 = 0)$ $\Rightarrow (\lambda + 2) (\lambda^2 - 2\lambda - 8) = 0$ M1 $\Rightarrow (\lambda+2)(\lambda+2)(\lambda-4) = 0$ $\lambda = -2.4$ A1 (4) Parametric form of l_1 : (t+2,-3t,4t-1)(d) M1 $\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} t+2 \\ -3t \\ 4t-1 \end{pmatrix} = \begin{pmatrix} 13t-1 \\ 10t-1 \\ 7t+5 \end{pmatrix}$ M1 A1 Cartesian equations of l_2 : $\frac{x+1}{13} = \frac{y+1}{10} = \frac{z-5}{7}$ ddM1A1(5) 13

WFM03/01: Further Pure Mathematics F3

Question Number	Scheme	Marks
7(a)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 0 \\ 6 & -2 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$	M1 A2(1,0)
	$ \begin{pmatrix} 1\\4\\2 \end{pmatrix} \bullet \begin{pmatrix} 3\\0\\1 \end{pmatrix} = 5 $	
	$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 5$	M1A1 (5)
(b)	Equation of l is $\mathbf{r} = \begin{pmatrix} 6\\13\\5 \end{pmatrix} + t \begin{pmatrix} 1\\4\\2 \end{pmatrix}$	M1
	At intersection $\begin{pmatrix} 6+t\\13+4t\\5+2t \end{pmatrix} \cdot \begin{pmatrix} 1\\4\\2 \end{pmatrix} = 5$	M1
	$\Rightarrow 6+t+4(13+4t)+2(5+2t)=5 \Rightarrow t=-3$	M1
	N is (3,1,-1) *	A1 (4)
(c)	$\overrightarrow{PN} \cdot \overrightarrow{PR} = (-3\mathbf{i} - 12\mathbf{j} - 6\mathbf{k}) \cdot (-5\mathbf{i} - 13\mathbf{j} - 3\mathbf{k}) = 189$	M1 A1ft
	$\sqrt{9+144+36}\sqrt{25+169+9}\cos NPR = 189$	A1
	$NX = NP\sin NPR = \sqrt{189}\sin NPR = 3.61$	M1A1 (5)
		14

WFM03/01: Further Pure Mathematics F3

Question Number	Scheme	Marks
8(a)	$\frac{dx}{dt} = 4\sec t \tan t \frac{dy}{dt} = 2\sec^2 t$	B1 (both)
	$\frac{dy}{dx} = \frac{2\sec^2 t}{4\sec t \tan t} \left(=\frac{1}{2\sin t}\right)$	M1
	$y - 2\tan t = \frac{1}{2\sin t} (x - 4\sec t)$	M1 A1
	$2y\sin t - \frac{4\sin^2 t}{\cos t} = x - \frac{4}{\cos t}$	
	$2y\sin t = x - \frac{4 - 4\sin^2 t}{\cos t} = x - 4\cos t \qquad \bigstar$	A1 (5)
(b)	Gradient of l_2 is $-2\sin t$	M1
	$y = -2x\sin t \tag{2}$	A1
	$2(-2x\sin t)\sin t = x - 4\cos t \Longrightarrow x = \frac{4\cos t}{1 + 4\sin^2 t} $ (1)	M1 A1
	$y = \frac{-8\sin t\cos t}{1+4\sin^2 t}$	M1 A1
	$\left(x^{2} + y^{2}\right)^{2} = \left(\frac{16\cos^{2} t}{\left(1 + 4\sin^{2} t\right)^{2}} + \frac{64\sin^{2} t\cos^{2} t}{\left(1 + 4\sin^{2} t\right)^{2}}\right)^{2}$	
	$=\frac{256\cos^4 t}{\left(1+4\sin^2 t\right)^4}\left(1+4\sin^2 t\right)^2=\frac{256\cos^4 t}{\left(1+4\sin^2 t\right)^2}$	M1
	$16x^{2} - 4y^{2} = \frac{256\cos^{2} t}{\left(1 + 4\sin^{2} t\right)^{2}} - \frac{256\sin^{2} t\cos^{2} t}{\left(1 + 4\sin^{2} t\right)^{2}} = \frac{256\cos^{4} t}{\left(1 + 4\sin^{2} t\right)^{2}}$	A1 (8) 13

WFM03/01: Further Pure Mathematics F3