Mark Scheme 4728 June 2005

73

4728

Mark Scheme

1	(i)	R is smooth	B1	1	
	(ii)		M1		For resolving forces horizontally to obtain an equation in <i>T</i> (requires 3 relevant terms and at least one force resolved)
		$T + T\cos 60^\circ = 1.6\cos 45^\circ$ Tension is 0.754 N AG	A1	3	
	(iii)	$mg = T\sin 60^\circ + 1.6\sin 45^\circ$	M1 A1 ft		For resolving forces vertically to obtain an equation for m (requires 3 relevant terms with both T and the 1.6 N force resolved) ft sin/cos mix from (ii)
		m = 0.182	A1	3	SR $m = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ M1 m = 1.78 B1
	(1)		2.54		
2	(1)		М1 А1		For applying $F = ma$ (requires at least ma, T and air resistance in linear combination in at least one equation). At least one equation with not more than one error.
		$\begin{array}{l} 0.2g + T - 0.4 = 0.2a \\ 0.3g - T - 0.25 = 0.3a \end{array}$	A1 A1	4	SR $0.2g - T - 0.4 = 0.2a$ and $0.3g + T - 0.25 = 0.3a$ B1
	(ii)		M1		For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F = ma$ to the complete system
		0.5g - 0.65 = 0.5a or 5T - 0.7 = 0	A1 ft		For a correct equation in <i>a</i> only

A1

3

or *T* only

ft opposite direction of *T* only

a = 8.5 and T = 0.14 (positive

only)

		-		
3	(i)	Momentum before=0.1×4 –	B1	or Loss by $P = 0.1 \times 4 + 0.1u$
		0.2×3		
		Momentum after =	B1	or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		-0.1u + 0.2(3.5 - u)		
		$0.1 \times 4 - 0.2 \times 3 =$	M1	For using the principle of
		-0.1u + 0.2(3.5 - u)		conservation of momentum
		u = 5 (positive value only)	A1 4	
				SR If mgv used for momentum
				instead of mv, then
				<i>u</i> = 3 B1
	(ii)		M1	For using $v^2 = u^2 + 2as$ with v
				= 0 (either case) or equivalent
				equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft	ft value of u from (i)
		0.9 + 0.025	M1	For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1 4	

			-		
4	(i) a		M1		For using $s = ut + \frac{1}{2} at^2$ for the first stage
		$2 = 0.8u + \frac{1}{2}a(0.8)^2$	A1		inst surge
			M1		For obtaining another
		$8 = 2u + \frac{1}{2} a2^{2} \text{ or } 6 = 1.2(u + 0.8a) + \frac{1}{2} a(1.2)^{2} \text{ or } 6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^{2}$	A1		equation in <i>u</i> and <i>a</i> with relevant values of velocity, displacement and time
			M1		For eliminating <i>a</i> or <i>u</i>
		u = 1.5	A1		
		Acceleration is 2.5 ms^{-2}	A1	7	
	(i) β		M1		For using $s = vt - \frac{1}{2} at^2$ for the first stage
		$2 - 0.8y + \frac{1}{2}a(0.8)^2$	Δ1		the first stage
		2 = 0.07 = 72 u(0.0)	M1		For using $s = ut + \frac{1}{2} dt^2$ for
		2	1011		the second stage $-ut + 72 ut$ for
		$6 = 1.2v + \frac{1}{2} a(1.2)^2$	A1		
			M1		For obtaining values of a and v and using $v = u + at$ for first store to find u
		$\mathbf{A} = \mathbf{A}^{-2}$	A 1		for first stage to find u
		Acceleration is 2.5 ms $(v = 2.5)$	AI	7	
		(3.5)	AI	/	
	(i) y	$2 \div 0.8 \text{ ms}^{-1} \text{and } 6 \div 1.2 \text{ ms}^{-1}$	M1		For finding average speeds
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1		in both intervals
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B1		For finding mid-interval
		5 = 2.5 + a (1.4 - 0.4)	M1		times
					For using $v = u + at$ between
		Acceleration is 2.5 ms^{-2}	A1		the mid-interval times
L	L	L	1		

		$2.5 = u + 2.5 \ge 0.4$ or $5 = u + 2.5 \ge 1.4$	M1		
		<i>u</i> = 1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
((ii)	$2.5 = 9.8 \sin \alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on A vertically
					(3 terms)
		$F = 2 + 7\cos\alpha$	A1		
		F = 3.96 (may be implied)	A1		
		$N = 7 \sin \alpha$	M1		For resolving forces on A
			Δ1		horizontally (2 terms)
		N = 6.72 (may be implied)			
		$3.96 = \mu 6.72$	M1		For using $F = \mu N$
		Coefficient is 0.589 or 33/56 cao	A1	7	
	(ii)	$T\cos\beta = 7\cos\alpha$	M1		For resolving forces at <i>P</i> vertically (2 terms)
		$T\cos\beta = 7 \times 0.28$ (= 1.96 AG)	A1	2	
	(iii)		M1		For resolving forces on B
					vertically (2 terms)
		$T\cos\beta - mg = 0$	A1		
		Mass is 0.2 kg	A1	3	

6	(i)(a)	$V = P\cos 20^\circ - 0.04g$	B1		
		D 0.417	M1		For setting $V = 0$
		P = 0.417	A1	3	
	(i)(b)	$R = P \sin 20^{\circ}$	M1		For using R = horizontal component of P
		Magnitude is 0.143 N	A1ft	2	ft value of P
	(i)(c)	0.143 = 0.04a	M1		For using Newton's second law
	. / . /	Acceleration is 3.57 ms ⁻²	A1ft	2	ft magnitude of the resultant
	(ii)	$R^2 = 0.08^2 + (0.04g)^2$	M1		For using $R^2 = P^2 + W^2$
	~ /	Magnitude is 0.400 N (or 0.40 or	A1		
		0.4)			
		$\tan \theta = +/-0.04g/0.08 \text{ or}$	M1		For using $\tan \theta = Y/X$ or
		$\tan(90^{\circ} - \theta) = +/-0.08/0.04$ g			$\tan(90^\circ - \theta) = X/Y$
		Angle made with norizontal is 78.5° or 1.37 radians or	Δ1		
		angle made with vertical is 11.5°			
		or 0.201 radians			
		Downwards or below	B1	5	Direction may alternatively be
		horizontal			shown clearly on a diagram or
					given as a bearing

7	(i)	¹ / ₂ 200×16 + 300× ¹ / ₂ (16 + 25)	M1		For using the idea that the area of the quadrilateral represents distance
		+ ½ 100×25 (=1600 + 6150 +	A1		
		1250)	A1	3	
		Distance is 9000m			
	(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient (= vel \div time) represents acceleration
		Deceleration is 0.25 ms ⁻²	A1	2	Or for using $v = u + at$ Allow acceleration = - 0.25 ms ⁻²
	(iii)	Acceleration is $(1200t - 3t^2) \times 10^{-6}$	M1 A1	2	For using $a(t) = \dot{v}(t)$
	(iv)	0.25 – 0.2475 Amount is +/- 0.0025 ms ⁻²	M1 A1ft	2	For using 'ans(ii) $- a_Q(550) $ ' ft ans(ii) only
	(v)	$1200t - 3t^2 = 0$	M1		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		t = (0 or) 400 AG	A1	2	Or for obtaining $a_Q(400) = 0$
	(vi)		M1		For correct method for $s_P(400)$
	. /	$\frac{1}{2}200 \times 16 + 200 \times \frac{1}{2}(16 + 22)$	A1		
		$a_{1}(4) = (200t^{3} + t^{4}/4) \times 10^{-6} (100)$	M1		For using $s_Q(t) = \int v_Q dt$
		$S_Q(i) = (200i - i/4) \land 10 (+C)$ 6400 - 5400	A1		For using correct limits and
			M1		finding
		Distance is 1000 m			$ s_Q(400) - s_P(400) $
			A1	6	