PH2

Question			Marking details	Marks Available
1	(a)	(i) (ii)	Either $ \lambda = 1.16 \text{ [m] (1)} $ $ f = 50 \text{ [Hz] (1)} $ $ v = 58 \text{ [m s}^{-1}\text{](1)} $ $ v = \frac{\lambda}{T} \text{ or } v = \frac{1.16}{0.02} \text{ (1)} $ $ v = 58 \text{ [m s}^{-1}\text{](1)} $	2
	(b)	(iii) (iv) (i)	$v = 58 \text{ [m s}^{-1}](1)$ [1 mark only if either 1.2m used or 1.74/0.03 used] All 4 nodes labelled Any crosses placed in first and last loops	3 1 1
		(ii)	Either line drawn \checkmark $f = 17 \text{ Hz (1) UNIT mark}$ New wavelength = 3.48 m or 3 × previous λ or appeal to $f = [n] \frac{v}{2L}(1)$ (Allow 1 mark only if $f = 34 \text{ Hz}$) Allow e.c.f. from (b)(i)	2
	(c)	(i) (ii)	The displacement at any point is the [vector] sum of the displacements of the individual waves. $t = 1.0 \text{ s}$: horizontal line shown (1) $t = 2.0 \text{ s}$: inversion of $t = 0 \text{ shown } (1)$	1 2
			Question 1 total	[13]

Question			Marking details	Marks Available
2	(a)	(i) (ii)	 I. Vibrations / oscillations / displacements [accept particle displacements] are perpendicular / at right angles / 90° to the propagation directions [or equiv.] II. Vibrations / oscillations / displacements [accept particle displacements] are in one direction [accept in one plane] Alternates [gradually] between light and dark (1) 2 extinctions / dark places in 360°/ or equivalent (1) [Accept an answer which assumes initially bright or initially dark] 	1 1 2
	(b)	(i) (ii)	I. Light spreads out [round edge of each slit] [or equiv.] II. So light from the two slits overlaps [or equiv.] I. $\lambda = \frac{2.0 \text{ mm} \times 0.50 \text{ mm}}{1.5 \text{ m}}$ (1) = 670 n[m] (1) [667 nm, accept 700 nm] II. Fringe separation increased (1); [bright] fringes dimmer (1)	1 1 2 2
	(c)		$3\lambda = d \sin 77^{\circ} \text{ [or by impl.] (1)}$ $d = \frac{1}{5.00 \times 10^{5}} \text{ m [= 2.00 \times 10^{-6} \text{ m] [or by impl.] (1)}}$ $\lambda = 650 \text{ n[m] (1)}$	3
			Question 2 total	[13]

Question			Marking details			Marks Available		
3	(a)	(i) (ii) (iii) (iv)	Smooth curve drawn through all the points 46° [or as appropriate from drawn line] Reflected ray drawn with angle of reflection equal to θ_{P} by eye . Any of:			1 1 1		
			$\frac{\sin 14^{\circ}}{\sin 10^{\circ}} \checkmark$ $1.39 [\pm 0.05] \checkmark$ or by	$\frac{\sin 28.5^{\circ}}{\sin 20^{\circ}}$ 1.40[±0.05]	$\frac{\sin 44^{\circ}}{\sin 30^{\circ}}$ 1.40[±0.05]	$\frac{\sin 64^{\circ}}{\sin 40^{\circ}}$ 1.40[±0.05]	$\frac{\sin 82^{\circ}}{\sin 45^{\circ}}$ 1.40[±0.05]	
		(v)	implication I. Any 2 × (1) f • Straig		 			2
				• Gradient > 1 ✓ II. [n is the] gradient				2
	(b)	(i) (ii) (iii)	1.530 sin $c = 1.520$ [sin 90°] (1) [or by impl.] $c = 83^\circ$ (1) $\theta = 7^\circ$ [accept 6.5°] e.c.f. from (b)(i) Smaller <u>differences</u> in distances travelled or times taken [by light travelling different paths] (1), so less blurring / smearing / overlap of data / pulses (1) [or data can be transmitted at a greater rate] Less multimode dispersion only award 2^{nd} mark				2	
							2	
							[13]	
4	(a)	$f_{\text{Thresh}} = \frac{\phi}{h} (1) \text{ [or by impl.]} = 5.1[3] \times 10^{14} \text{ [Hz] (1)}$				2		
	(b)	(i)	Photon $E = 6.63 \times 10^{-34} \times 7.4 \times 10^{14} [= 4.91 \times 10^{-19} \text{J}][\text{or by impl.}](1)$ $E_{\text{k max}} [= 4.91 \times 10^{-19} - 3.4 \times 10^{-19}] = 1.5 \times 10^{-19} [\text{J}](1)$			2		
	(ii) [A single] photon gives its energy to an electron (1) Some of the energy used to escape from the metal (1).					2		
	(c)	(i)	Points plotted at $(5.1 \times 10^{14} \text{Hz}, 0)$ and $(7.4 \times 10^{14} \text{Hz}, 1.5 \times 10^{-19} \text{ J})$ (1) Allow e.c.f. from (a) and (b)(i) Straight line drawn through points (1)					
		(ii) (iii)	(One correct point only and a positive slope line = 1 mark) h / the Planck constant Straight line drawn with same gradient as (i) and to the right			2 1 1		
			Question 4 Total			[10]		

Question			Marking details	Marks Available	
5	(a)		$E = \frac{hc}{\lambda} \text{ [or equiv. eg. } E = hf \text{ and } \lambda = \frac{c}{f} \text{ or by impl] (1)}$		
			$\lambda_{\text{UG}} = 6.95 \times 10^{-7} \text{ [m] (1)}$	2	
	(b)	(i) (ii)	More electrons in level U than in level G They / the photons would be absorbed [accept 'disappear'] (1). The	1	
		(iii)	energy would be used to excite ions [accept atoms] / raise electrons from G to U [or equiv.] (1)	2	
			U <u> </u>		
		(;)	Both transitions shown	1	
		(iv)	Any 2 x (1) from • Passing / incident photon ✓ • Excited ion ✓		
			 Electron drops to lower level ✓ The incident photon must have wavelength = λ_{UG} [or 695 nm] 		
			or must have energy 2.86 x 10 ⁻¹⁹ J ✓ 3 rd mark		
			• 2 photons where there was one previously. Accept by implication e.g. in phase with the incident photon.	3	
	(c)		Any 2 → (1); any third →(2) from • [plane] polarised ✓ • Coherent✓		
			 Monochromatic√ Parallel beam√ 	2	
				2	
			Question 5 Total	[11]	

Question			Marking details	Marks Available	
6	(a)	(i) (ii) (iii)	$\lambda_{\text{Peak}} = \frac{2.90 \times 10^{-3} \text{ K m}}{2.5 \times 10^{7} \text{ K}} (1) = 1.16 \times 10^{-10} \text{ [m] (1)}$ X-ray / \gamma\text{-ray}	2	
		(iv)	Spectral intensity love in bigh 1 'tail' but not gare	1	
	(b)	(IV)	Spectral intensity low in high λ 'tail' but not zero. $P = \sigma A \times (2.5 \times 10^7 \text{ K})^4 \text{ [or by impl.] (1)}$ $A = 4\pi \times 11000^2 \text{ [or by impl.] (1) [= 1.52 \times 10^9 \text{ m}^2]}$ $P = 3.4 \times 10^{31} \text{ W (1) UNIT mark}$	3	
	(c)		$A_2 T_2^4 = A_1 T_1^4 (1) \text{ or } T_2^4 = \frac{3.4 \times 10^{31}}{5.67 \times 10^{-8} \times 3.04 \times 10^9} \text{ K}^4 \text{ e.c.f from (b)}$ $T_2 = 2.1 \times 10^7 \text{ K (1)}$	2	
			Question 6 Total	[10]	
7	(a)	(i)	 Any 3 × (1) from d have ¹/₃ electronic charge / -¹/₃e charge√ ds have greater mass than e s√ ds feel strong force [or interact with gluons]; e don't√ ds cannot be isolated; e can [or d can only be found in specific groupings; e can be by itself] √ ds have lepton number 0, es have lepton number 1 √ [3 × (-¹/₃e)] = -e [accept e or -1 or 1.6 × 10⁻¹¹¹ C with some justification] 	3	
	(b)		Any 2 × (1) from • Very short decay time ✓ • Individual quark flavours conserved ✓ • Accept: no neutrino [and no γ] emission	2	
	(c)	(i) (ii)	x is an electron (1) y is an antineutrino (1) clear logical reasoning based on the laws of conservation of charge and of lepton number (1) Weak	3 1	
			Question 7 Total	[10]	