PH1

Question			Marking details	Marks Available
1	(a)	(i)	Horizontal velocity = $\frac{1.20}{0.60}$ = 2[.0 m s ⁻¹]	1
		(ii)	$u = 2.94 [\mathrm{m s^{-1}}] (1)$	
			or $0 = u - 9.81 \times 0.30$ [correct substitution into $v = u + at$] (1) $u = 2.94$ [m s ⁻¹] (1) [Other solutions possible]	2
	<i>(b)</i>	(i)	$R = (4 + 8.64)^{1/2} (1) [\mathbf{ecf} \text{ from } (a)(i) \text{ and/or } (a)(ii)]$ $R = 3.56 [\mathbf{m s}^{-1}] (1)$	2
		(ii)	$\theta = 55.8^{\circ} \text{ ecf}$	1
	(c)	(i) (ii)	Force of gravity on earth due to grasshopper $F = 3 \times 10^{-5} \times 9.81 = 2.9 \times 10^{-4} \text{ [N] Accept } 0.3 \text{ m[N]}$	1 1
	(d)		←	1
			Question 1 Total	[9]
2	(a)		VA^{-1} and WA^{-2} 2 × (1)	2
	<i>(b)</i>	(i)	$V = 0.01 \times 450 = 4.5 [V]$	1
		(ii)	12 V - 4.5 V [ecf] = 7.5 [V]	1
		(iii)	$R = \frac{7.5}{0.01}$ (1 for correct use of 7.5 or ecf) = 750 [Ω] (1) or correct alternative	2
		(iv)	$\frac{1}{750} = \frac{1}{900} + \frac{1}{R} (1) \text{ (substitution)}$ $R_{\text{variable resistor}} = 4500 [\Omega] (1)$	2
			Alternative solution to (iii) and (iv) $I \text{ through } 900 \Omega = \frac{7.5}{900} = 0.0083 \text{ [A] (1)}$	
			I through variable resistor = $0.0017[A]$ (1)	
			$R_{\text{variable resistor}} = \frac{7.5}{0.0017} = 4500 \left[\Omega\right] (1)$	
			Use of resistors in parallel formula to find total parallel resistance = $750[\Omega](1)$	

Question	Marking details	Marks Available
(c)	[No mark for stating circuit resistance decreases] Current in circuit increases (1) [accept explanation based on potential divider. Hence pd across 450Ω increases (1) Hence pd across 900Ω decreases (1) this mark can't be awarded unless it is correctly substantiated Alternative solutions: Resistance of parallel combination decreases (1) pd across parallel combination decreases (1) pd across 900Ω decreases (1) OR current through the variable resistor increases (1) current through the 900Ω decreases (1) pd across the 900Ω decreases (1)	3
	Question 2 total	[11]

Que	Question			Marking details	
3	(a)	(i)		[Free] electrons forced to move by applied pd (Need a reference to drift velocity or electron flow but does not need to be explicitly stated) (1) They collide with atoms/nuclei/ions/lattice of the wire (1) don't accept particles or molecules	2
		(ii)		Power = $\frac{1.8}{60}$ = 0.03 [W] (1) $R = \frac{0.03(\text{ecf})}{1.6^2} = 0.0117 [\Omega] (1)$ Alternative solution possible for the first 2 marks using $V = \frac{W}{O}$ and	
				$R = \frac{V}{I}$ $\rho = \frac{0.0117 \times 2 \times 10^{-6}}{0.4} \text{ (1) [ecf on } R]$ $= 5.9 \times 10^{-8} [\Omega \text{ m}] \text{ (1)}$	4
	(b)	(i)		I or (vt) [accept v if stated dist travelled in 1 s] A [NB free electrons not required to be labelled]	
				Number of free electrons = $nAvt$ [or nAl] (1) Total change = $nAvte$ [or $nAle$] (1) $I = \frac{nAvte}{t}$ with cancelling shown [or $\frac{nAle}{t}$, where $\frac{l}{t} = v$ shown] (1)	
				Volume defined either from diagram [e.g. A and l labelled as shown] or in body of derivation [e.g. vol = Al] and n identified correctly—for the first mark	4
		(ii)		$1.6 = 6.4 \times 10^{28} \times 2 \times 10^{-6} \times v \times 1.6 \times 10^{-19} \text{ (1: substitution)}$ $v = 7.8 \times 10^{-5} \text{ [m s}^{-1}\text{] (1)}$	2
		(iii)	(I) (II) (III)	less than 1.6 A identified/circled (1) the same as identified/circled (1) half identified/circled (1)	3
				Question 3 Total	[15]

Question			Marking details	Marks Available	
4	(a)	(i)	Water bath or method of heating shown. Wire [coiled or uncoiled] shown (1). Voltmeter and ammeter and power supply correctly connected or ohmmeter only shown (1) Thermometer clearly identifiable. (1) Subtract 1 mark for poorly drawn diagrams. Method of cooling water to 0 °C not credited here.	3	
		(ii)	Method of cooling water to 0 °C (1) [Can be credited from (i)] Resistance values taken [or V and I values taken and R calculated](1)at different temperatures [minimum 5 implied or implication that a number of temperatures considered] (1) Method to reduce experimental error/ensure accuracy e.g. water stirred/resistance of leads/heat slowly/remove heat to allow temperature to settle (1) Accept repeat the experiment again or obtain readings whilst cooling down or using a digital thermometer. Don't accept just repeat readings. Graph of R vs θ drawn (1)	5	
	(b)	(i)	[-163 °C] is the temperature at which a sudden decrease in resistance occurs and the metal [alloy] (1)becomes a superconductor or resistance becomes zero (1)	2	
		(ii)	<u>Liquid nitrogen</u> [Accept liquid helium, liquid oxygen, liquid hydrogen]	1	
			Question 4 Total	[11]	

Question			Marking details	Marks Available
5	(a)	(i)	$power = \frac{work done or energy transferred}{time}$ [Accept rate of doing work/ rate of energy transfer]	1
		(ii)	kg m s ⁻² × m × s ⁻¹ (1) [Evidence of full correct methodology] kg m ² s ⁻³ (1)	2
	(b)	(i)	$E_p = 70 \times 9.81 \times 215 \text{ (1)}$ [= 147641 J] $E_k = \frac{1}{2} (70)(35)^2 \text{ (1)}$ [= 42875 J] $E_{\text{lost}} = 147641 - 42875 \text{ (1)} [= 104766] \text{(ecf on both } E_p \text{ and } E_k)$ $F = \frac{104766}{1600} = 65.5 \text{ [N] (1) (ecf on } E_{\text{lost}})$ Alternative solution: $\text{using } v^2 = u^2 + 2ax$	4
		(ii)	$P = \frac{104766}{46} \text{ ecf } (1)$ = 2277 J s ⁻¹ or W (1) UNIT mark	2
			Question 5 total	[9]
6	(a)		Point d (1) Moment = Fd (1) [award only if clear diagram shown] / if no right angle in diagram then perpendicular must be included in definition	2
	(b)	(i)	$(F (\sin 40^\circ)(1) \times 0.4) (1) = ((12 \times 0.9) + (22 \times 1.8)) (1)$ F = 196 [N] shown	3
		(ii)	 (I) Vertical component of force in strut = 126 [N] (1) Accept 128 [N] or 129 [N] if F = 200 N is used. (II) Vertical downward arrow shown at hinge. (1) (III) Vertical force on bar due to hinge = 92 [N] (1) ecf 	3
			Question 6 Total	[8]

Question			I	Marking details	Marks Available
7	(a)	(i)		[Vector] distance between two locations measured along the shortest path joining them.	1
		(ii)	(I)	calculated (1)	
				Speed = $\frac{600}{12.5}$ (1) = 48 [km h ⁻¹](1)	3
ĺ			(II)	0 km h ⁻¹ (1) displacement = 0 stated (1)	2
	(b)	(i)		Suitable tangent drawn (1) = 0.15 (accept range 0.12 to 0.18) (1) $\Sigma F = 1.2 \times 10^6 \times 0.15 = 180[\text{kN}]$ (1) [ecf on gradient value] ΣF range = 144 kN to 216 kN	3
		(ii)		Line (or time axis) labelled at ≥ 92 or 94 seconds	1
		(iii)		Constant speed (1) Driving force balanced [equal to] resistive forces (1) [Do not accept $\Sigma F = 0$]	2
	(c)	(i)	(I)	$F = \frac{Wx}{t} \text{ and } \frac{x}{t} \text{ shown to be} = v$	1
			(II)	$v ext{ (from graph)} = 17.2 \text{ m s}^{-1} (1)$ $F = \frac{4.5 \times 10^6}{17.2} = 262 \text{[kN]} (1)$	2
		(ii)		$180000 = 262000 - F_{\text{drag}}(1)$ [ecf on both forces] $F_{\text{drag}} = 82$ [kN] (1)	2
				Question 7 Total	[17]