GCE Physics - PH2

Mark Scheme - January 2013

Question			Marking details	Marks Available
1	(a)	(i) (ii)	3.0 [cm] [accept 3 cm] $v = 3.0 \times 5.0 (1) \text{ [cm s}^{-1} \text{] or by implication. } $ Full ecf on λ	[1]
		(11)	$t = \frac{d}{v} \text{ applied (1)}$ $t = 0.70 \text{ s (ecf on } \lambda) \text{ (1)}$ OR $d = \frac{10.5}{3.0} \text{ (1)}$ $T = 0.20 \text{ [s] (1)}$ $[t = 0.20x \frac{10.5}{3.0}] t = 0.70 \text{ [s] (1)}$	[3]
		(iii)	B in phase, C not in phase (in antiphase not acceptable), D in phase - irrespective of explanations. (1) Correct answer and understandable explanation or 'in phase' explained, for one of B, C or D. (1) Correct answer and understandable explanation for another of B, C, or D. (1)	[3]
	(b)	(i) (ii)	Diffraction Rounded and (almost) semicircular (Accept gaps of \ll 3 mm) (1) λ constant (1) (within about 30%)	[1] [2]
			arcapt small gags	
		(iii)	Any 2 x (1) from: • λ decreased [No penalty for (say) 'halved'] • less spreading • side beams	[2]
			Question 1 total	[12]

Question			Marking details	Marks Available
2	(a)	(i) (ii)	Constructive interference at P / waves arrive in phase at P (1) Same path length from sources / AP = BP / no path difference (1) 52.2 and 50.2 (1) $\lambda = 2.0 \text{ [cm] (1) ecf on slips}$ OR $56.8 \text{ and } 52.8 \text{ (1)}$ $\lambda = 2.0 \text{ [cm] (1) ecf on slips}$	[2] [2]
		(iii) (I)	$\lambda = \frac{10.0x10.0}{50} (1) = 2.0 \text{ cm } (1) \text{ UNIT}$ $OR \ \lambda = \frac{10.0x12.0}{50} (1) = 2.4 \text{ cm } (1) \text{ UNIT}$	[2]
		(II)	AB or SP not very small compared with D OR maxima not evenly spaced	[1]
	(b)	(i)	$d = 2.0 \times 10^{-6} \text{ [m] (1) or by implication}$ $3\lambda = d^* \sin 72.3^{\circ} (1)$ $[d^* \text{ needs to be related to } d, \text{ even } 5.0 \times 10^5 \text{ would do]}$ $\lambda = 6.35 \times 10^{-7} \text{ [m] (1)}$	
		(ii)	Up to 3^{rd} order visible, $1 + 3x2$ beams seen OR diagram (1)	[3]
			$\frac{d}{\lambda} = 3.15 (1)$ so only 3 orders (1) not a freestanding mark $OR \frac{4\lambda}{d} > 1 (1)$ so only 3 orders (1) not a freestanding mark	[3]
			Question 2 total	[13]

Question			Marking details	Marks Available
3.	(a)	(i)	normal to surface of block at P bands and from normal from the surface of block at P	[2]
		415	(II) $1.58 \sin 25^{\circ} = [1.00] \sin a$ (1) or equivalent or by implication $a = 42^{\circ}$ (1)	[2]
		(ii)	(I) Either $c = 39^{\circ}$ (1) $60^{\circ} > 39^{\circ}$ or equivalent (1) OR 1.58 sin 60° gives error (1) So refraction not possible or TIR [needs <i>attempt</i> to justify] (1)	[2]
			(II) TIR at Q and at least one more instance of TIR with subsequent ecf (1)	
			As drawn with reflected ray at Q going off East of South, eventually emerging through diameter face ,with at least one more TIR event.(1)	[2]
			air giasy air	
	(b)	(i) (ii)	Thinner Monomode: parallel to axis (accept straight)	[1]
		(iii)	Multimode: zig-zag paths as well (1) or some paths involve reflections Only one route for data (1) [no zig-zag routes] Each pulse [data element etc] arrives [at other end of fibre] at same time (1)	[1]
			No overlapping of pulses (1) [even over long distances] Question 3 Total	[3] [13]

Question	Marking details	Marks Available
(b) (iii)	$E_{k\text{max}} = 1.97 \text{ x } 10^{-19} \text{ [J] (1)}$ These photons eject electrons with smaller $E_{k\text{max}}(1)$ $E_{k\text{max}}$ same as previously with some explanation given (1)	[4] [2] [2] [3]

Question			Marking details	Marks Available
5	(a)		$E = \frac{hc}{\lambda}$ (1) or equivalent e.g. $E = hf$ and $f = \frac{c}{\lambda}$ $\lambda = 880$ [nm] (1)	[2]
	(b)	(i) (ii)	 Photon disappears and the electron gains its energy or electron promoted from G to U 1. [Passing] photon 2. Of energy 2.26 x 10⁻¹⁹ [J] or λ = 880 [nm] or equivalent 3. Causes electron to drop [from U to G] 4. Releasing additional photon 5. Identical to or in phase or polarised in the same direction or travelling in the same direction with the incident photon Award (1) mark for each of statements 1, 3 and 4 Award the 4th mark for either statement 2 or 5. 	[1] [4]
	(c)	(iii)	Electron drops [from U to G] by itself (or randomly or without stimulation), with emission of photon Raising electrons to higher level or causing population inversion	[1] [1]
		(ii)	So more electrons in higher level than lower (1). So stimulated emission more probable than absorption (1). Question 5 Total	[2] [11]

Que	Question		Marking details	Marks Available	
6	(a)	(i) (ii)	$A = 4\pi(8.54 \times 10^8 \text{ [m]})^2 (1) [9.16 \times 10^{18} \text{ [m}^2]]$ $P = 5.67 \times 10^{-8} \text{ x}$ area attempt x 5790 ⁴ (1) [W] $P = 5.84 \times 10^{26} \text{ [W]}$ and consistency ecf on slips (1) [One mark to be lost for slips e.g. powers of 10, factors of 2, 4, π] Or alternative solution using Stefan's law is acceptable.	[3]	
		(iii)	$I = \frac{power}{4\pi (4.1x10^{16})^2} (1)$ $I = 2.76 \times 10^{-8} \text{ Wm}^2 \text{ UNIT (1)}$ [penalty of 1 mark for slips of 10 ⁿ , 4, π etc no penalty if same slip as in (i)] $\lambda_{\text{pmax}} = \frac{2.9x10^{-3}}{5790} (1) = 5.01 \times 10^{-7} [\text{m}] (1)$	[2]	
			GRAPH - Goes through origin and doesn't hit the axis (1) Peak at $\sim 500 \text{ nm}$ (Apply ecf) (1)	[4]	
			spectral intensity 500 1000 KSEO 2000 Wavelength/nm		
	(b)		P goes up and T goes down and then A goes up (1) Because $A = \frac{P}{\sigma T^4}$ or any convincing explanation (1)	[2]	
			Question 6 Total	[11]	

Question			Marking details	Marks Available
7	(a)		Name (1) [e.g. antiproton, antineutron] Quarks (1) [e.g. uud , udd	[2]
	(b)	(i)	Must be neutral or lepton number conserved (1) v_e by considering charge and lepton number (1)	[2]
		(ii)	1st mark: \(\pi^+ \) (1) Either 2 x (1) from: • y can't be a lepton [violates lepton conservation] • y must be positive • y can't be a baryon OR y must have u quark number [2-1] = 1 (1) and d quark number [1-2] = -1 (1)	[3]
		(iii)	In (i) Yes – quark flavour changes or neutrino (1) In (ii) No – quark flavours conserved (1) [accept no neutrino]	[2]
			Question 7 Total	[9]

© WJEC CBAC Ltd.