Mark Scheme 4728 June 2007

1.75		D.1	V (DO D 4 1 / 1 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
		[0]	award B1 for the pair of values 5 and 12 irrespective of
	$R^2 = 5^2 + 12^2$	[2]	order $P^2 = V^2 + V^2$
(ii)		M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan\theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: $p=14.9$ and $Q=11.4$ giving $R=13+/-0.1$ B2,
		[4]	Angle = $67.5 + /-0.5 B2$
2(i)	250 + ½ (290 – 250)	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
2(1)	230 + 72 (290 - 230)	IVII	Ose of the ratio 12.12 (may be implied), of $v = u + at$
	t = 270	A1	
	1 – 270	[2]	
(ii)		M1	The idea that area represents displacement
(11)	½ x40x12+210x12+½x20x12-	M1	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	½x20x12 or ½ x40x12+210x12	1,11	triangle4 with triangle3 = triangle4 , triangle1 +
	or ½ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	
	r	[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle,		•
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(i)		M1	An equation with R, T and 50 in linear combination.
	$R + T\sin 72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^{\circ} = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	4
	m = 52.6	B1	Accept 52.5
(iii)	$X = T\cos 72^{\circ}$	[4] B1	Implied by correct
(111)	A = 100872	DI	answer
	X = 159	B1	Or better
		[2]	or sense
		r -1	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
	positive sense throughout.		-
	$0.18 \times 2 - 3m = 0$	A1	
	m = 0.12	A1	
		[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$	3.51	
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	2 1
(::1.)	0.19 - 2 - 2 - 2	[3]	3 marks possible if g included consistently
(iib)	$0.18 \times 2 - 3m$	B1ft	ft wrong momentum 'before'
	= (0.18 + m)1.5 $m = 0.02$	B1	
	m = 0.02 0.18 x 2 - 3m= - (0.18 + m)1.5	B1ft	
	$0.18 \times 2 - 3 \text{ m} = -(0.18 + \text{ m})1.3$ m = 0.42	В111 В1	
	III — U.42	[4]	0 marks if g included
		[+]	o marks ii g included

5(i)		M1	Using $v^2 = u^2 + /- 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A1	
	Height is 3.6m (AG)	A 1	
		[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
	_		s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2}gt^2$ and		Or 8.4t $(-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) + /-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g, $cv(5.6)$, +/-2 in only one equation
	t = 5/7 (0.714)	A1	cao
		M1	Using $v = u$ +at for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including sign)
	$v_P = 1.4$ and $v_Q = -1.4$	A1	cao
	-	[6]	
	OR (time when at same speed in		
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 - gt and $-v = 5.6 - gt$	A1	Correct sign for g, $cv(5.6)$
	$v = 1.4 \{ \text{or } t = 5/7 (0.714) \}$	A1	Only one correct answer is needed
	(with $v = 1.4$) $1.4^2 = 8.4^2 - 2gs_P$ and	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$(-1.4)^2 = 5.6^2 - 2gs_Q$	A1	Correct sign for g, $cv(5.6)$, candidate's answer for v (including - for Q)
	$s_P = 3.5 \text{ and } s_Q = 1.5$ {(with t=5/7)	A1	cao
	(((1211 0 0,7)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and	1,11	coming of art 1,2 art for 1 areas for Q, are 1,7 g, 0,7 (c)
	$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$	A1	Correct sign for g, cv(5.6), candidate's answer for t (including sign of t if negative)
	$s_P = 3.5 \text{ and } s_Q = 1.5$	A1	cao}
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6$ -gt	1411	Using $y = u \mid au \mid 101 \mid 1 \mid au \mid 101 \mid Q$, $a = \pm 7 - g$
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$	111	mid-interval t $(6/7+4/7)/2 = 0.714$
	$v_P = 0.4 - 0.714g \text{ and } v_Q = 3.0 - 0.714g$ $\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$ / $2=0.714$
	$v_P = 1.4$ and $v_Q = 0.4g/7$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} 0.714^2$ and	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_0 = 5.6x0.714 - \frac{1}{2}gx0.714$ and $s_0 = 5.6x0.714 - \frac{1}{2}gx0.714^2$	1411	s = ut + 72 at for 1 and for Q, correct sign for g, cv(5.6) and $cv(t)$
	$s_0 = 5.6x_0.714 = 72 \text{ g.s.}.714$ { $s_P = 0.77 - \frac{1}{2}(-\text{g})x(1.77)^2$ and		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and \ s = ut + \frac{1}{2} at^2 \text{ for Q} \}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2 $	A1	(5 - vt /2 ut 1011 unu 5 - ut + /2 ut 101 Q)
	$s_P = 3.5 \ s_Q = 1.5$		
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
	(-10)		continued
			Communica

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, cv(5.6),
			different expressions for s.
cont	$v_P^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, $cv(5.6)$, $(s+/-2)$ used only once
			cao. Verbal explanation essential
	$v_0^2 = 5.6^2 - 2g[(s+/-2)]$	A 1	Using $v = u+at$ t for P and for Q, $a = +/-g$
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that		Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
	<i>-</i>	M1	
	0 = 8.4 - gt and $0 = 5.6 - gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		1
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4 \text{ms}^{-1}$ (AG)	A1	Correct formula for v (no +c) and $t=10$
	` /	[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A 1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2 (+C)$	M1	
	$v(20) = 16 - 16 = 0 \tag{AG}$	DA1	Dependant on M1*
		[5]	_
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A 1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \rightarrow K = 10/3$	A1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M 1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
			fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	$a = 2.24 \tag{AG}$	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 \text{ x (-3.81) x 0.8}$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
	,		value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	