

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 2R (6664_01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038458 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or AG answer given
- _ or d... The second mark is dependent on gaining the first mark
- aliter alternative method
- aef any equivalent form
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6.
- 7. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 8. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

PMT

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

PMT

Question Number	Scl	neme	Marks
	(1+	$\left(-\frac{3x}{2}\right)^8$	
	1 + 12x	Both terms correct as printed (allow $12x^1$ but not 1^8)	B1
1.	provided the equivalent conditions at + $8\left(\frac{3x}{2}\right)^7$ (1)	$\left(\frac{8(7)}{2!} \times \times x^{2}\right) \text{ or } \left(\frac{8(7)(6)}{3!} \times \times x^{3}\right) \text{ or } \left({}^{8}\text{C}_{2} \times \times x^{2}\right) \text{ or } \left({}^{8}\text{C}_{3} \times \times x^{3}\right)$ M1: For <u>either</u> the x^{2} term <u>or</u> the x^{3} term. Requires <u>correct</u> binomial coefficient in any form <u>with the correct power of x</u> , but the other part of the coefficient (perhaps including powers of 2 and/or 3 or signs) may be wrong or missing. a attempt at a descending expansion tre met for any term <u>other than the first</u> $+ \frac{8(7)}{2!} \left(\frac{3x}{2}\right)^{6} (1)^{2} +$	M1
	$\dots + 63x^2 + 189x^3 + \dots$	A1: Either $63x^2$ or $189x^3$ A1: Both $63x^2$ and $189x^3$	- A1A1
	Terms may be listed but must be positive		
			[4
			Total
	Note it is common not to square the 2 in the denominator of $\left(\frac{3x}{2}\right)$ and this gives		
	$1 + 12x + 126x^2 + 756x^3$. This could score B		
	Note + ${}^{8}C_{2}\left(1^{4} + \frac{3x}{2}\right)^{2} + {}^{8}C_{3}\left(1^{3} + \frac{3x}{2}\right)^{3} +$	would score M0 unless a correct method	
	was implied by later work		

Question Number	Sch	eme	Marks
Number	S	= 6 <i>a</i>	
	$\frac{a}{1-r} = 6a$	Either $\frac{a}{1-r} = 6a$ or $\frac{6a}{1-r} = a$ or $\frac{6}{1-r} = 1$	M1
2. (a)	$\{\Rightarrow 1 = 6(1-r) \Rightarrow\} r = \frac{5}{6}*$	cso	A1*
	Allow verification e.g. $\frac{a}{1-r} = 6a$	$a \Rightarrow \frac{a}{1 - \frac{5}{6}} = 6a \Rightarrow \frac{a}{\frac{1}{6}} = 6a \Rightarrow 6a = 6a$	
		2	[2]
	$(T_{1}, \frac{3}{2}, c_{2}, c_{3}, \frac{5}{2})^{3}$	$a\left(\frac{5}{6}\right)^3 = 62.5$ (Correct statement using	M1
(b)	$\left\{ \mathrm{T}_{4} = ar^{3} = 62.5 \Rightarrow \right\} a \left(\frac{5}{6}\right)^{3} = 62.5$	the 4 th term. Do not accept $a\left(\frac{5}{6}\right)^4 = 62.5$	M1
-	$\Rightarrow a = 108$) 108	A1
		100	[2]
	$S_{\infty} = 6$ (their <i>a</i>) or $\frac{\text{their } a}{1 - \frac{5}{6}} \{ = 648 \}$	Correct method to find S_{∞}	M1
(c)	$\left\{\mathbf{S}_{30}=\right\}\frac{108\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\frac{5}{6}} \left\{= 645.2701573\right\}$	M1: $S_{30} = \frac{(\text{their } a)\left(1 - \left(\frac{5}{6}\right)^{30}\right)}{1 - \left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6) A1ft: Correct follow through expression	M1 A1ft
		(follow through their <i>a</i>). Do not condone invisible brackets around 5/6 unless <u>their</u> evaluation or final answer implies they were intended.	
	$\{\mathbf{S}_{\infty} - \mathbf{S}_{30}\} = 2.72984$	awrt 2.73	A1
			[4]
			Total 8
(c)	<u>Alternative:</u> Difference = $\frac{ar^{30}}{1-r} = \frac{108\left(\frac{5}{6}\right)^{30}}{1-\frac{5}{6}} = 2.72984$		
	M1M1: For an attempt to apply $\frac{ar^{30}}{1-r}$. A1ft: $\frac{(their a) \times r^{30}}{1-r}$ with their ft <i>a</i> . A1: awrt 2.73		

Question Number	Scheme		Mark
3. (a)	$\sqrt{7}$ and $\sqrt{15}$	Both $\sqrt{7}$ and $\sqrt{15}$. Allow awrt 2.65 and 3.87	B1
			[
(b)	Area $(R) \approx \frac{1}{2} \times 2; \times \left\{ \sqrt{3} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) + \sqrt{19} \right\}$	Outside brackets $\frac{1}{2} \times 2$ or 1 (may be implied)	B1;
		$\underline{\text{For structure of}}{\underline{\{\dots,\dots,\}}}$	<u>M1</u>
	Note decimal value	es are	
	$\frac{1}{2} \times 2; \times \left\{ \sqrt{3} + \sqrt{19} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) \right\} =$	$\frac{1}{2} \times 2; \times \{ 6.0909 + 19.6707 \}$	
	M1 requires the correct structure for the <i>y</i> values. last <i>y</i> value and the second bracket to be multiplied remaining <i>y</i> values in the table with no addition copying error or is to omit one value from 2() to and the M mark can be allowed (nb: an extra rep mark). M0 if any values used are <i>x</i> values instead of Bracketing mistakes: e.g. $\left(\frac{1}{2} \times 2\right) \times \left(\sqrt{3} + \sqrt{19}\right) + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right)$ $\left(\frac{1}{2} \times 2\right) \times \sqrt{3} + \sqrt{19} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right)$	by 2 and to be the summation of the al values. If the only mistake is a bracket this may be regarded as a slip beated term, however, forfeits the M	
	Both score B1 M1		
	Alternative:		
	Separate trapezia may be used, and this can be marked equivalently.		
	$\left[\frac{1}{2} \times 2(\sqrt{3} + \sqrt{7}) + \frac{1}{2} \times 2(\sqrt{7} + \sqrt{11}) + \frac{1}{2} \times 2(\sqrt{11} + \sqrt{15}) + \frac{1}{2} \times 2(\sqrt{15} + \sqrt{19})\right]$		
	B1 for $\frac{1}{2} \times 2$, M1 for correct structure		
	$= 1 \times 25.76166865 = 25.76166 = \underline{25.76}$ (2dp)	25.76	A1 cao
			[
(c)	underestimate	Accept 'under', 'less than' etc.	B1
]
			Total

Question Number	Scheme	2	Marks
	$f(x) = -4x^3 + ax^3$	$x^{2} + 9x - 18$	
4. (a)	$f(2) = -32 + 4a + 18 - 18 = 0$ $\Rightarrow 4a = 32 \Rightarrow a = 8$	Attempts f(2) or f(-2) cso	M1 A1 [2]
	$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{i$		
	$f(x) = (x-2)(px^2 + qx + r)$		
	$= px^{3} + (q-2p)x^{2} + (r-2q)x - 2r$		
(a) Way 2	$r = 9 \Longrightarrow q = 0$ also $p = -4$ $\therefore a = -2p = 8$	Compares coefficients leading to -2p = a	M1
	<i>a</i> = 8	cso	A1
	$(-4x^3 + ax^2 + 9x - 18) \div (x - 2)$		
(a) Way 3	$Q = -4x^{2} + (a-8)x + 2a - 7$ $R = 4a - 32$	Attempt to divide $\pm f(x)$ by $(x - 2)$ to give a quotient at least of the form $\pm 4x^2 + g(a)x$ and a remainder that is a function of <i>a</i>	M1
	$4a - 32 = 0 \Longrightarrow a = 8$	cso	A1
(b)	$f(x) = (x - 2)(-4x^{2} + 9)$ = (x - 2)(3 - 2x)(3 + 2x) or equivalent e.g. = -(x - 2)(2x - 3)(2x + 3)	Attempts long division or other method, to obtain $(-4x^2 \pm ax \pm b), b \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."dM1: A valid attempt to factorise their quadratic – see General Principles. This is dependent on the previous method mark being awarded, but there must have been no	M1 dM1A1
	= -(x-2)(2x-3)(2x+3) or = (x-2)(2x-3)(-2x-3)	remainder. A1: cao – must have all 3 factors on the same line. Ignore subsequent work (such as a solution to a quadratic equation.)	
(c)	$f\left(\frac{1}{2}\right) = -4\left(\frac{1}{8}\right) + 8\left(\frac{1}{4}\right) + 9\left(\frac{1}{2}\right) - 18 = -12$	Attempts $f(\frac{1}{2})$ or $f(-\frac{1}{2})$ Allow A1ft for the correctnumerical value of $\frac{\text{their } a}{4} - 14$	M1A1ft
			[2
	$\pm (-4x^3 + 8x^2 + 9x - 18) \div (2x - 1)$		
(c) Way 2	$Q = -2x^2 + 3x + 6$ $R = -12$	M1: Attempt long division to give a remainder that is independent of x A1: Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4} - 14$.	• M1A1ft
			Total 7

Question Number	Scheme		Marks
5(a)	Length $DEA = 7(2.1) = 14.7$	M1:7×2.1 only A1: 14.7	M1A1
			[2]
(b)	Angle $CBD = \pi - 2.1$	May be seen on the diagram(allow awrt 1.0 and allow 180 –120). Could score for sight ofAngle CBD = awrt 60 degrees.	M1
	Both $7\cos(\pi - 2.1)$ and $7\sin(\pi - 2.1)$ or Both $7\cos(\pi - 2.1)$ and $\sqrt{7^2 - (7\cos(\pi - 2.1))}$ or Both $7\sin(\pi - 2.1)$ and $\sqrt{7^2 - (7\sin(\pi - 2.1))^2}$ Or equivalents to these	implied by awrt 6. Note if the sin	dM1
	Note that 2.1 radians is 120 degrees (to 3sf) which if used gives angle CBD as 60 degrees. If used this gives a correct perimeter of 31.3 and could score full		
	marks		
	$P = 7\cos(\pi - 2.1) + 7\sin(\pi - 2.1) + 7 + 14.7$	their BC + their CD + 7 + their DEA Dependent on <u>both</u> previous method marks	ddM1
	= 31.2764	Awrt 31.3	A1
			[4]
			Total 6

Question Number	Scheme		Marks
	$\int \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx = \frac{x^4}{32} + \frac{x^3}{4} \{+c\}$	M1: $x^n \rightarrow x^{n+1}$ on either term A1: $\frac{x^4}{32} + \frac{x^3}{4}$. Any correct simplified or un-simplified form. (+ c not required)	M1A1
	$\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^2 = \left(\frac{16}{32} + \frac{8}{4}\right) - \left(\frac{256}{32} + \frac{(-64)}{4}\right)$ or $\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^0 = \left(0\right) - \left(\frac{\left(-4\right)^4}{32} + \frac{(-4)^3}{4}\right) \text{ added to} \left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{0}^2 = \left(\frac{\left(2\right)^4}{32} + \frac{\left(2\right)^3}{4}\right) - \left(0\right)$		dM1
	Substitutes limits of 2 and -4 into an "integrated function" and subtracts either way round. Or substitutes limits of 0 and -4 and 2 and 0 into an "integrated function" and subtracts either way round and adds the two results.		
6.	$=\frac{21}{2}$	$\frac{21}{2}$ or 10.5	A1
	{At $x = -4$, $y = -8 + 12 = 4$ or at $x = 2$, $y = 1 + 3 = 4$ }		
	Area of Rectangle $= 6 \times 4 = 24$ or Area of Rectangles $= 4 \times 4 = 16$ and $2 \times 4 = 8$		M1
	Evidence of (42) × their y_{-4} or (42) × their y_2		
	or Evidence of $4 \times$ their y_{-4} and $2 \times$ their y_2		
	So, area(R) = $24 - \frac{21}{2} = \frac{27}{2}$	dddM1: Area rectangle –integrated answer. Dependenton all previous method marksand requires:Rectangle > integration > 0A1: $\frac{27}{2}$ or 13.5	dddM1A1
			[7
			Total 7

<u>Alternative</u> :	<u>.</u>	
$\pm \int "\text{their4}" - \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx$	Line – curve. Condone missing brackets and allow either way round.	4 th M1
$= 4x - \frac{x^4}{32} - \frac{x^3}{4} \{+c\}$	M1: $x^n \rightarrow x^{n+1}$ on either curve term A1ft: " $-\frac{x^4}{32} - \frac{x^3}{4}$." Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	1 st M1,1 st A1ft
$\left[\right]_{-4}^{2} = \frac{\left(8 - \frac{16}{32} - \frac{8}{4}\right) - \left(-16 - \frac{256}{32} - \frac{(-64)}{4}\right)}{4}$	required) 2 nd M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round. 3 rd M1 for ±("8"-"-16") Substitutes limits into the 'line part' and subtracts either way round. 2 nd A1 for correct ± (underlined expression). Now needs to be correct but allow ± the correct expression.	2 nd M1, 3 rd M1 2 nd A1
$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	3 rd A1
If the final answer is -13.5 you can If -13.5 then "becomes" +13		

Question Number	S	cheme	Marks
	$\frac{\sin 2\theta}{(4\sin 2\theta - 1)} = 1; \ 0 \leqslant \theta < 180^{\circ}$		
	$\sin 2\theta = \frac{1}{3}$	$\sin 2\theta = k$ where $-1 < k < 1$ Must be 2 θ and not θ .	M1
	$\{2\theta = \{19.4712, 160.5288\}\}$		
7.(i)	$\theta = \{9.7356, 80.2644\}$	A1: Either awrt 9.7 or awrt 80.3 A1: Both awrt 9.7 and awrt 80.3	A1 A1
		e than once e.g. 9.8 and 80.2 from correct l score M1A1A0	
	If <u>both</u> answers are correct in radians award A1A0 otherwise A0A0 Correct answers are 0.2 and 1.4		
	Extra solutions in range in an other	wise fully correct solution deduct the last	
-	A1		Г <u>а</u>
	$5\sin^2 x - 2\cos x - 5 = 0, \ 0 \le x < 2\pi.$		[3
-	$5511 x^{-2} \cos x$ $5(1 - \cos^2 x) - 2\cos x - 5 = 0$	Applies $\sin^2 x = 1 - \cos^2 x$	M1
_		Cancelling out $\cos x$ or a valid attempt	
	$5\cos^2 x + 2\cos x = 0$ $\cos x(5\cos x + 2) = 0$	at solving the quadratic in cosx and	dM1
	$\Rightarrow \cos x = \dots$	giving $\cos x = \dots$ Dependent on the	UIVII
-		previous method mark.	
_	awrt 1.98 or awrt 4.3(0)	Degrees: 113.58, 246.42	A1
	Both 1.98 and 4.3(0)	or their α and their $2\pi - \alpha$, where $\alpha \neq \frac{\pi}{2}$.	A1ft
(ii)		If working in degrees allow $360 - \text{their}$ α	
	awrt 1.57 or $\frac{\pi}{2}$ and 4.71 or $\frac{3\pi}{2}$ or	These answers only but ignore other answers <u>outside</u> the range	B1
_	90° and 270°		
-	NB: $x = awrt \left\{ 1.98, 4.3 \right\}$	$(0), 1.57 \text{ or } \frac{\pi}{2}, 4.71 \text{ or } \frac{3\pi}{2} $	[5
		grees: 113.58, 246.42, 90, 270 re M1M1A0A1ftB1 (4/5)	<u> </u>

Number	Scheme		Mark
		$5^{y} = 8$	
	$y \log 5 = \log 8$	$y\log 5 = \log 8$ or $y = \log_5 8$	M1
8. (i)	$\left\{ y = \frac{\log 8}{\log 5} \right\} = 1.2920$	awrt 1.29	A1
	Allow corr	rect answer only	
	· · · · · · · · · · · · · · · · · · ·	×	[2
	$\log_2(x+1)$	$5) - 4 = \frac{1}{2} \log_2 x$	
	$\log_2(x+15) - 4 = \log_2 x^{\frac{1}{2}}$	Applies the power law of logarithms seen at any point in their working	M1
	$\log_2\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 4$	Applies the subtraction or addition law of logarithms at any point in their working	M1
	$\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 2^4$	Obtains a correct expression with logs removed and no errors	M1
(ii)	$x - 16x^{\frac{1}{2}} + 15 = 0$ or e.g. $x^{2} + 225 = 226x$	Correct three term quadratic in any form	A1
	$(\sqrt{x}-1)(\sqrt{x}-15) = 0 \Rightarrow \sqrt{x} = \dots$	A valid attempt to factorise or solve their three term quadratic to obtain $\sqrt{x} = \dots$ or $x = \dots$ Dependent on all previous method marks.	dddM
	$\left\{\sqrt{x} = 1, 15\right\}$		
	x=1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1
			[Total
	Alte	ernative:	
		$(15) - 8 = \log_2 x$	
	$\log_2(x+15)^2 - 8 = \log_2 x$	Applies the power law of logarithms	M1
	$\log_2\left(\frac{(x+15)^2}{x}\right) = 8$	Applies the subtraction law of logarithms	M1
	$\frac{(x+15)^2}{x} = 2^8$	Obtains a correct expression with logs removed	M1
	$x^2 + 30x + 225 = 256x$		
	$x^2 - 226x + 225 = 0$	Correct three term quadratic in any form	A1
	$(x-1)(x-225) = 0 \Rightarrow x = \dots$	A valid attempt to factorise or solve their 3TQ to obtain $x =$ Dependent on all previous method marks.	dddM
-	<i>x</i> =1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1

Question Number	Scheme		Marks		
9. (a)	$\{A=\} xy + \frac{\pi}{2} \left(\frac{x}{2}\right)^2 + \frac{1}{2} x^2 \sin 60^\circ$	M1: An attempt to find 3 areas of the form: xy , $p\pi x^2$ and qx^2 A1: Correct expression for <i>A</i> (terms must be added)	M1A1		
	$50 = xy + \frac{\pi x^2}{8} + \frac{\sqrt{3} x^2}{4} \Rightarrow y = \frac{50}{x} - \frac{\pi x}{8} - \frac{\sqrt{3} x}{4} \Rightarrow y = \frac{50}{x} - \frac{x}{8} (\pi + 2\sqrt{3})^*$ Correct proof with no errors seen		A1 *		
	$\left\{P=\right\}\frac{\pi x}{2}+2x+2y$	Correct expression for P in terms of x and y	[3] B1		
-	$P = \frac{\pi x}{2} + 2x + 2\left(\frac{50}{x} - \frac{x}{8}(\pi + 2\sqrt{3})\right)$	Substitutes the given expression for y into an expression for P where P is at least of the form $\alpha x + \beta y$	M1		
(b)	$P = \frac{\pi x}{2} + 2x + \frac{100}{x} - \frac{\pi x}{4} - \frac{\sqrt{3}}{2}x \implies P = \frac{100}{x} + \frac{\pi x}{4} + 2x - \frac{\sqrt{3}}{2}x$				
-	$\Rightarrow P = \frac{100}{x} + \frac{x}{4} \left(\pi + 8 - 2\sqrt{3} \right)$	Correct proof with no errors seen	A1 *		
			[3]		
	(Note $\frac{\pi + 8 - 2\sqrt{3}}{4} = 1.919)$				
	$\frac{\mathrm{d}P}{\mathrm{d}x} = -100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4}$	M1: Either $\mu x \to \mu$ or $\frac{100}{x} \to \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be simplified). Allow $-100x^{-2} + (awrt1.92)$	M1A1		
	$-100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4} = 0 \Longrightarrow x = \dots$	Their $P' = 0$ and attempt to solve as far as $x = \dots$ (ignore poor manipulation)	M1		
(c) and (d)	$\Rightarrow x = \sqrt{\frac{400}{\pi + 8 - 2\sqrt{3}}} = 7.2180574$	$\sqrt{\frac{400}{\pi + 8 - 2\sqrt{3}}}$ or awrt 7.2 and no other values	A1		
	${x = 7.218,} \implies P = 27.708 (m)$	awrt 27.7	A1		
can be marked			[5]		
marked together	$\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = \frac{200}{x^3} > 0 \implies \text{Minimum}$	M1: Finds $P''(x^n \to x^{n-1} \text{ allow for } constant \to 0)$ and considers sign A1ft: $\frac{200}{x^3}$ (need not be simplified) and > 0 and conclusion. Only follow through on a correct P'' and a single positive value of x found earlier.	M1A1ft		
			[2]		
			Total 13		

Question Number	Scheme		
10(a)	$A\left(\frac{-9+15}{2},\frac{8-10}{2}\right) = A(3,-1)$	M1: A correct attempt to find the midpoint between <i>P</i> and <i>Q</i> . Can be implied by one of <i>x</i> or <i>y</i> -coordinates correctly evaluated. A1: $(3, -1)$	M1A1
			[2]
(b)	$(-9-3)^{2} + (8+1)^{2} \text{ or } \sqrt{(-9-3)^{2} + (8+1)^{2}}$ or $(15-3)^{2} + (-10+1)^{2} \text{ or } \sqrt{(15-3)^{2} + (-10+1)^{2}}$ Uses Pythagoras correctly in order to find the radius . Must clearly be identified as the radius and may be implied by their circle equation. Or $(15+9)^{2} + (-10-8)^{2}$ or $\sqrt{(15+9)^{2} + (-10-8)^{2}}$ Uses Pythagoras correctly in order to find the diameter . Must clearly be identified as the diameter and may be implied by their circle equation. This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation) Allow this mark if there is a correct statement involving the radius or the diameter but <u>must be seen in (b)</u>		M1
	$(x-3)^{2} + (y+1)^{2} = 225 \text{ (or } (15)^{2})$	$(x \pm \alpha)^2 + (y \pm \beta)^2 = k^2$ where $A(\alpha, \beta)$ and k is their radius.	M1
	$(x-3)^2 + (y+1)^2 = 225$	Allow $(x-3)^2 + (y+1)^2 = 15^2$	A1
	Accept correct answer only		
	Alternative using $x^2 + 2ax + y^2 + 2by + c = 0$		[3]
	Uses $A(\pm \alpha, \pm \beta)$ and $x^2 + 2ax + y^2 + 2by + c = 0$ e.g. $x^2 + 2(-3)x + y^2 + 2(1)y + c = 0$		M1
	Uses P or Q and $x^{2} + 2ax + y^{2} + 2by + c = 0$ e.g. $(-9)^{2} + 2(-3)(-9) + (8)^{2} + 2(1)(8) + c = 0 \Rightarrow c = -215$		M1
	$x^2 - 6x + y^2 + 2y - 215 = 0$		A1
(c)	Distance = $\sqrt{15^2 - 10^2}$	$= \sqrt{(\text{their } r)^2 - 10^2} \text{ or a correct method}$ for the distance e.g. their $r \times \cos\left[\sin^{-1}\left(\frac{10}{\text{their } r}\right)\right]$	M1
	$\left\{=\sqrt{125}\right\} = 5\sqrt{5}$	$5\sqrt{5}$	A1
			[2]

Question Number	Scheme		
	$\sin\left(A\widehat{R}Q\right) = \frac{20}{30} \text{ or}$ $A\widehat{R}Q = 90 - \cos^{-1}\left(\frac{10}{15}\right)$	$\sin(A\hat{R}Q) = \frac{20}{(2 \times \text{their } r)} \text{ or } \frac{10}{\text{their } r}$ or $A\hat{R}Q = 90 - \cos^{-1}\left(\frac{10}{\text{their } r}\right)$ or $A\hat{R}Q = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $A\hat{R}Q = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $20^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(2ARQ)$ or $15^2 = 15^2 + (10\sqrt{5})^2 - 2 \times 15 \times 10\sqrt{5} \cos(ARQ)$ A fully correct method to find $A\hat{R}Q$, where their $r > 10$. Must be a correct statement involving angle ARQ	M1
-	$A\hat{R}Q = 41.8103$	awrt 41.8	A1
			[2]
			Total 9

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE